BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25032905)

  • 1. Prediction of peptide fragment ion mass spectra by data mining techniques.
    Dong NP; Liang YZ; Xu QS; Mok DK; Yi LZ; Lu HM; He M; Fan W
    Anal Chem; 2014 Aug; 86(15):7446-54. PubMed ID: 25032905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pNovo: de novo peptide sequencing and identification using HCD spectra.
    Chi H; Sun RX; Yang B; Song CQ; Wang LH; Liu C; Fu Y; Yuan ZF; Wang HP; He SM; Dong MQ
    J Proteome Res; 2010 May; 9(5):2713-24. PubMed ID: 20329752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speeding up tandem mass spectrometry based database searching by peptide and spectrum indexing.
    Li Y; Chi H; Wang LH; Wang HP; Fu Y; Yuan ZF; Li SJ; Liu YS; Sun RX; Zeng R; He SM
    Rapid Commun Mass Spectrom; 2010 Mar; 24(6):807-14. PubMed ID: 20187083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of selected reaction monitoring peptide transitions via multiplexed product-ion scan modes.
    Cho BK; Koo YD; Kim K; Kang MJ; Lee YY; Kim Y; Park KS; Kim KP; Yi EC
    Rapid Commun Mass Spectrom; 2014 Apr; 28(7):773-80. PubMed ID: 24573808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis.
    Hjernø K; Højrup P
    Methods Mol Biol; 2015; 1348():83-102. PubMed ID: 26424266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic investigation into the nature of tryptic HCD spectra.
    Michalski A; Neuhauser N; Cox J; Mann M
    J Proteome Res; 2012 Nov; 11(11):5479-91. PubMed ID: 22998608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining a tandem mass spectrometry database to determine the trends and global factors influencing peptide fragmentation.
    Kapp EA; Schütz F; Reid GE; Eddes JS; Moritz RL; O'Hair RA; Speed TP; Simpson RJ
    Anal Chem; 2003 Nov; 75(22):6251-64. PubMed ID: 14616009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HI-bone: a scoring system for identifying phenylisothiocyanate-derivatized peptides based on precursor mass and high intensity fragment ions.
    Perez-Riverol Y; Sánchez A; Noda J; Borges D; Carvalho PC; Wang R; Vizcaíno JA; Betancourt L; Ramos Y; Duarte G; Nogueira FC; González LJ; Padrón G; Tabb DL; Hermjakob H; Domont GB; Besada V
    Anal Chem; 2013 Apr; 85(7):3515-20. PubMed ID: 23448308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid identification of comigrating gel-isolated proteins by ion trap-mass spectrometry.
    Arnott D; Henzel WJ; Stults JT
    Electrophoresis; 1998 May; 19(6):968-80. PubMed ID: 9638943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deconvolution of mixture spectra and increased throughput of peptide identification by utilization of intensified complementary ions formed in tandem mass spectrometry.
    Kryuchkov F; Verano-Braga T; Hansen TA; Sprenger RR; Kjeldsen F
    J Proteome Res; 2013 Jul; 12(7):3362-71. PubMed ID: 23725413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding and exploiting Peptide fragment ion intensities using experimental and informatic approaches.
    Gucinski AC; Dodds ED; Li W; Wysocki VH
    Methods Mol Biol; 2010; 604():73-94. PubMed ID: 20013365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Peptide-Spectrum Matching by Fragmentation Prediction Using Hidden Markov Models.
    Kirik U; Refsgaard JC; Jensen LJ
    J Proteome Res; 2019 Jun; 18(6):2385-2396. PubMed ID: 31074280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MS2PIP: a tool for MS/MS peak intensity prediction.
    Degroeve S; Martens L
    Bioinformatics; 2013 Dec; 29(24):3199-203. PubMed ID: 24078703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OpenMS-Simulator: an open-source software for theoretical tandem mass spectrum prediction.
    Wang Y; Yang F; Wu P; Bu D; Sun S
    BMC Bioinformatics; 2015 Apr; 16():110. PubMed ID: 25887925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of low-energy collision-induced dissociation spectra of peptides.
    Zhang Z
    Anal Chem; 2004 Jul; 76(14):3908-22. PubMed ID: 15253624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A global analysis of peptide fragmentation variability.
    Barsnes H; Eidhammer I; Martens L
    Proteomics; 2011 Mar; 11(6):1181-8. PubMed ID: 21328539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of iTRAQ labeling on the relative abundance of peptide fragment ions produced by MALDI-MS/MS.
    Gandhi T; Puri P; Fusetti F; Breitling R; Poolman B; Permentier HP
    J Proteome Res; 2012 Aug; 11(8):4044-51. PubMed ID: 22770492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MS-Simulator: predicting y-ion intensities for peptides with two charges based on the intensity ratio of neighboring ions.
    Sun S; Yang F; Yang Q; Zhang H; Wang Y; Bu D; Ma B
    J Proteome Res; 2012 Sep; 11(9):4509-16. PubMed ID: 22794508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive de novo sequencing of new parvalbumin isoforms using a novel combination of bottom-up proteomics, accurate molecular mass measurement by FTICR-MS, and selected MS/MS ion monitoring.
    Carrera M; Cañas B; Vázquez J; Gallardo JM
    J Proteome Res; 2010 Sep; 9(9):4393-406. PubMed ID: 20586483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of related peptides through the analysis of fragment ion mass shifts.
    Wilhelm T; Jones AM
    J Proteome Res; 2014 Sep; 13(9):4002-11. PubMed ID: 25058668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.