BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25032908)

  • 1. Protein folding and secretion: mechanistic insights advancing recombinant protein production in S. cerevisiae.
    Young CL; Robinson AS
    Curr Opin Biotechnol; 2014 Dec; 30():168-77. PubMed ID: 25032908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins.
    Thak EJ; Yoo SJ; Moon HY; Kang HA
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32009173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae.
    Hou J; Tyo KE; Liu Z; Petranovic D; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):491-510. PubMed ID: 22533807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae.
    Hou J; Tyo K; Liu Z; Petranovic D; Nielsen J
    Metab Eng; 2012 Mar; 14(2):120-7. PubMed ID: 22265825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae.
    Tang H; Bao X; Shen Y; Song M; Wang S; Wang C; Hou J
    Biotechnol Bioeng; 2015 Sep; 112(9):1872-82. PubMed ID: 25850421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the protein secretory pathway of
    Huang M; Wang G; Qin J; Petranovic D; Nielsen J
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):E11025-E11032. PubMed ID: 30397111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins.
    Delic M; Göngrich R; Mattanovich D; Gasser B
    Antioxid Redox Signal; 2014 Jul; 21(3):414-37. PubMed ID: 24483278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of antibody production in Saccharomyces cerevisiae: effects of ER protein quality control disruption.
    de Ruijter JC; Frey AD
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9061-71. PubMed ID: 26184977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae.
    Parsaie Nasab F; Aebi M; Bernhard G; Frey AD
    Appl Environ Microbiol; 2013 Feb; 79(3):997-1007. PubMed ID: 23204425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular secretion of overexpressed glycosylphosphatidylinositol-linked cell wall protein Utr2/Crh2p as a novel protein quality control mechanism in Saccharomyces cerevisiae.
    Miller KA; DiDone L; Krysan DJ
    Eukaryot Cell; 2010 Nov; 9(11):1669-79. PubMed ID: 20833895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae.
    Besada-Lombana PB; Da Silva NA
    Metab Eng; 2019 Sep; 55():142-151. PubMed ID: 31220665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris.
    Puxbaum V; Mattanovich D; Gasser B
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):2925-38. PubMed ID: 25722021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different Routes of Protein Folding Contribute to Improved Protein Production in Saccharomyces cerevisiae.
    Qi Q; Li F; Yu R; Engqvist MKM; Siewers V; Fuchs J; Nielsen J
    mBio; 2020 Nov; 11(6):. PubMed ID: 33173005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving secretion of recombinant proteins from yeast and mammalian cells: rational or empirical design?
    Tuite MF; Freedman RB
    Trends Biotechnol; 1994 Nov; 12(11):432-4. PubMed ID: 7765539
    [No Abstract]   [Full Text] [Related]  

  • 15. The challenge of improved secretory production of active pharmaceutical ingredients in Saccharomyces cerevisiae: a case study on human insulin analogs.
    Kazemi Seresht A; Palmqvist EA; Schluckebier G; Pettersson I; Olsson L
    Biotechnol Bioeng; 2013 Oct; 110(10):2764-74. PubMed ID: 23592021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of human ER chaperone BiP in yeast Saccharomyces cerevisiae.
    Čiplys E; Aučynaitė A; Slibinskas R
    Microb Cell Fact; 2014 Feb; 13():22. PubMed ID: 24512104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting endoplasmic reticulum (ER)-associated degradation of misfolded Yor1p does not permit ER export despite the presence of a diacidic sorting signal.
    Pagant S; Kung L; Dorrington M; Lee MC; Miller EA
    Mol Biol Cell; 2007 Sep; 18(9):3398-413. PubMed ID: 17615300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways.
    Spear ED; Ng DT
    Mol Biol Cell; 2003 Jul; 14(7):2756-67. PubMed ID: 12857862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention of chimeric Tat2-Gap1 permease in the endoplasmic reticulum induces unfolded protein response in Saccharomyces cerevisiae.
    Mochizuki T; Kimata Y; Uemura S; Abe F
    FEMS Yeast Res; 2015 Aug; 15(5):fov044. PubMed ID: 26071436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slp1-Emp65: A Guardian Factor that Protects Folding Polypeptides from Promiscuous Degradation.
    Zhang S; Xu C; Larrimore KE; Ng DTW
    Cell; 2017 Oct; 171(2):346-357.e12. PubMed ID: 28919078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.