These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 25032927)

  • 1. Harnessing buckling to design tunable locally resonant acoustic metamaterials.
    Wang P; Casadei F; Shan S; Weaver JC; Bertoldi K
    Phys Rev Lett; 2014 Jul; 113(1):014301. PubMed ID: 25032927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic metamaterials with circular sector cavities and programmable densities.
    Akl W; Elsabbagh A; Baz A
    J Acoust Soc Am; 2012 Oct; 132(4):2857-65. PubMed ID: 23039552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling of membrane-type locally resonant acoustic metamaterial arrays.
    Naify CJ; Chang CM; McKnight G; Nutt SR
    J Acoust Soc Am; 2012 Oct; 132(4):2784-92. PubMed ID: 23039544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of effective mass density and modulus for resonant metamaterials.
    Park J; Park B; Kim D; Park J
    J Acoust Soc Am; 2012 Oct; 132(4):2793-9. PubMed ID: 23039545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.
    Liu A; Zhou X; Huang G; Hu G
    J Acoust Soc Am; 2012 Oct; 132(4):2800-6. PubMed ID: 23039546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matryoshka locally resonant sonic crystal.
    Elford DP; Chalmers L; Kusmartsev FV; Swallowe GM
    J Acoust Soc Am; 2011 Nov; 130(5):2746-55. PubMed ID: 22087903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal.
    Pichard H; Richoux O; Groby JP
    J Acoust Soc Am; 2012 Oct; 132(4):2816-22. PubMed ID: 23039547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of two effective medium approaches for predicting sound scattering by periodic arrays of elastic shells.
    Umnova O; Krynkin A; Chong AY; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2013 Nov; 134(5):3619-30. PubMed ID: 24180773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired periodic panels optimized for acoustic insulation.
    Dal Poggetto VF; Pugno NM; Arruda JRF
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20210389. PubMed ID: 36209809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective dynamic band gap tuning in metamaterials using graded photoresponsive resonator arrays.
    Dal Poggetto VF; Urban D; Nistri F; Beoletto PH; Descrovi E; Miniaci M; Pugno NM; Bosia F; Gliozzi AS
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240150. PubMed ID: 39129411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable sonic crystal made of resonating bamboo rods.
    Lagarrigue C; Groby JP; Tournat V
    J Acoust Soc Am; 2013 Jan; 133(1):247-54. PubMed ID: 23297899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phononic glass: a robust acoustic-absorption material.
    Jiang H; Wang Y
    J Acoust Soc Am; 2012 Aug; 132(2):694-9. PubMed ID: 22894191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction to the special issue on acoustic metamaterials.
    Norris AN; Haberman MR
    J Acoust Soc Am; 2012 Oct; 132(4):2783. PubMed ID: 23039543
    [No Abstract]   [Full Text] [Related]  

  • 14. Harnessing Deformation to Switch On and Off the Propagation of Sound.
    Babaee S; Viard N; Wang P; Fang NX; Bertoldi K
    Adv Mater; 2016 Feb; 28(8):1631-5. PubMed ID: 26663556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable origami-inspired acoustic waveguides.
    Babaee S; Overvelde JT; Chen ER; Tournat V; Bertoldi K
    Sci Adv; 2016 Nov; 2(11):e1601019. PubMed ID: 28138527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictions and measurements of sound transmission through a periodic array of elastic shells in air.
    Krynkin A; Umnova O; Yung Boon Chong A; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2010 Dec; 128(6):3496-506. PubMed ID: 21218882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating and exploiting the impact of variability in resonator parameters on the vibration attenuation in locally resonant metamaterials.
    Van Belle L; Deckers E; Cicirello A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230364. PubMed ID: 39129401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials.
    De Maio U; Greco F; Nevone Blasi P; Pranno A; Sgambitterra G
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.
    Yu G; Li D; Cheng L
    J Acoust Soc Am; 2008 Dec; 124(6):3534-43. PubMed ID: 19206783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-magnetically controlled acoustic metamaterials with adaptive properties.
    Malinovsky VS; Donskoy DM
    J Acoust Soc Am; 2012 Oct; 132(4):2866-72. PubMed ID: 23039553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.