BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25033087)

  • 1. Ralfuranone Is Produced by an Alternative Aryl-Substituted γ-Lactone Biosynthetic Route in Ralstonia solanacearum.
    Pauly J; Nett M; Hoffmeister D
    J Nat Prod; 2014 Aug; 77(8):1967-71. PubMed ID: 25033087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ralfuranone thioether production by the plant pathogen Ralstonia solanacearum.
    Pauly J; Spiteller D; Linz J; Jacobs J; Allen C; Nett M; Hoffmeister D
    Chembiochem; 2013 Nov; 14(16):2169-78. PubMed ID: 24106142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the biosynthesis of ralfuranones in Ralstonia solanacearum.
    Kai K; Ohnishi H; Kiba A; Ohnishi K; Hikichi Y
    Biosci Biotechnol Biochem; 2016; 80(3):440-4. PubMed ID: 26645956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Ralfuranone/Ralstonin Production by Plant Sugars Functions in the Virulence of
    Ishikawa Y; Murai Y; Sakata M; Mori S; Matsuo S; Senuma W; Ohnishi K; Hikichi Y; Kai K
    ACS Chem Biol; 2019 Jul; 14(7):1546-1555. PubMed ID: 31246411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of ralfuranones in the quorum sensing signalling pathway and virulence of Ralstonia solanacearum strain OE1-1.
    Mori Y; Ishikawa S; Ohnishi H; Shimatani M; Morikawa Y; Hayashi K; Ohnishi K; Kiba A; Kai K; Hikichi Y
    Mol Plant Pathol; 2018 Feb; 19(2):454-463. PubMed ID: 28116815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of ralfuranone production in the virulence of Ralstonia solanacearum OE1-1.
    Kai K; Ohnishi H; Mori Y; Kiba A; Ohnishi K; Hikichi Y
    Chembiochem; 2014 Nov; 15(17):2590-7. PubMed ID: 25250839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ralfuranone biosynthesis in Ralstonia solanacearum suggests functional divergence in the quinone synthetase family of enzymes.
    Wackler B; Schneider P; Jacobs JM; Pauly J; Allen C; Nett M; Hoffmeister D
    Chem Biol; 2011 Mar; 18(3):354-60. PubMed ID: 21439480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronin from roots of Annona muricata, a putative intermediate in acetogenin biosynthesis (1).
    Gleye C; Akendengue B; Laurens A; Hocquemiller R
    Planta Med; 2001 Aug; 67(6):570-2. PubMed ID: 11509986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Annomonysvin: a new cytotoxic gamma-lactone-monotetrahydrofuranyl acetogenin from Annona montana].
    Jossang A; Dubaele B; Cavé A; Bartoli MH; Bériel H
    J Nat Prod; 1991; 54(4):967-71. PubMed ID: 1791482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ralfuranones contribute to mushroom-type biofilm formation by Ralstonia solanacearum strain OE1-1.
    Mori Y; Hosoi Y; Ishikawa S; Hayashi K; Asai Y; Ohnishi H; Shimatani M; Inoue K; Ikeda K; Nakayashiki H; Nishimura Y; Ohnishi K; Kiba A; Kai K; Hikichi Y
    Mol Plant Pathol; 2018 Apr; 19(4):975-985. PubMed ID: 28722830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel acetylated alpha-cyclosophorotridecaose produced by Ralstonia solanacearum.
    Cho E; Lee S; Jung S
    Carbohydr Res; 2008 Apr; 343(5):912-8. PubMed ID: 18262507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaloids from Pandanus amaryllifolius: Isolation and Their Plausible Biosynthetic Formation.
    Tsai YC; Yu ML; El-Shazly M; Beerhues L; Cheng YB; Chen LC; Hwang TL; Chen HF; Chung YM; Hou MF; Wu YC; Chang FR
    J Nat Prod; 2015 Oct; 78(10):2346-54. PubMed ID: 26461164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diastereoselective, vinylogous mukaiyama aldol additions of silyloxy furans to cyclic ketones: annulation of butenolides and gamma-lactones.
    Kong K; Romo D
    Org Lett; 2006 Jul; 8(14):2909-12. PubMed ID: 16805514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Lewis acid catalyzed transformation (gamma-butyrolactone versus cyclopropane) of 2-methoxy-4-benzyltetrahydrofuran derivatives. Efficient synthesis of lignan lactones.
    Ferrié L; Bouyssi D; Balme G
    Org Lett; 2005 Jul; 7(15):3143-6. PubMed ID: 16018606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii.
    Brachmann AO; Forst S; Furgani GM; Fodor A; Bode HB
    J Nat Prod; 2006 Dec; 69(12):1830-2. PubMed ID: 17190473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communiols E-H: new polyketide metabolites from the coprophilous fungus Podospora communis.
    Che Y; Araujo AR; Gloer JB; Scott JA; Malloch D
    J Nat Prod; 2005 Mar; 68(3):435-8. PubMed ID: 15787454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Butenolides from a cultured microfungus, Acremonium sp.
    Ghisalberti EL; Hargreaves JR; McConville E
    Nat Prod Res; 2004 Apr; 18(2):105-9. PubMed ID: 14984081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new bistetrahydrofuran acetogenin from the roots of Annona salzmanii.
    Queiroz EF; Roblot F; Cavé A; Hocquemiller R; Serani L; Laprévote O; Paulo MQ
    J Nat Prod; 1999 May; 62(5):710-3. PubMed ID: 10346951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel constituent from Rollinia mucosa, rollicosin, and a new approach to develop annonaceous acetogenins as potential antitumor agents.
    Liaw CC; Chang FR; Wu MJ; Wu YC
    J Nat Prod; 2003 Feb; 66(2):279-81. PubMed ID: 12608866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Classification and NMR characteristics of the gamma-lactone and THF rings of antitumor bioactive Annonaceous acetogenins].
    Chen Y; Yu DQ
    Yao Xue Xue Bao; 1998 Jul; 33(7):553-60. PubMed ID: 12016892
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.