These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25033443)

  • 1. Comparison of methods to account for relatedness in genome-wide association studies with family-based data.
    Eu-Ahsunthornwattana J; Miller EN; Fakiola M; ; Jeronimo SM; Blackwell JM; Cordell HJ
    PLoS Genet; 2014 Jul; 10(7):e1004445. PubMed ID: 25033443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accounting for relatedness in family-based association studies: application to Genetic Analysis Workshop 18 data.
    Eu-Ahsunthornwattana J; Howey RA; Cordell HJ
    BMC Proc; 2014; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S79. PubMed ID: 25519407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further improvements to linear mixed models for genome-wide association studies.
    Widmer C; Lippert C; Weissbrod O; Fusi N; Kadie C; Davidson R; Listgarten J; Heckerman D
    Sci Rep; 2014 Nov; 4():6874. PubMed ID: 25387525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of mixed model based approaches for correcting for population substructure with application to extreme phenotype sampling.
    Onifade M; Roy-Gagnon MH; Parent MÉ; Burkett KM
    BMC Genomics; 2022 Feb; 23(1):98. PubMed ID: 35120458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GWAS with longitudinal phenotypes: performance of approximate procedures.
    Sikorska K; Montazeri NM; Uitterlinden A; Rivadeneira F; Eilers PH; Lesaffre E
    Eur J Hum Genet; 2015 Oct; 23(10):1384-91. PubMed ID: 25712081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal component regression and linear mixed model in association analysis of structured samples: competitors or complements?
    Zhang Y; Pan W
    Genet Epidemiol; 2015 Mar; 39(3):149-55. PubMed ID: 25536929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.
    Zhou H; Blangero J; Dyer TD; Chan KK; Lange K; Sobel EM
    Genet Epidemiol; 2017 Apr; 41(3):174-186. PubMed ID: 27943406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix sketching framework for linear mixed models in association studies.
    Burch M; Bose A; Dexter G; Parida L; Drineas P
    Genome Res; 2024 Oct; 34(9):1304-1311. PubMed ID: 39231610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals.
    Ziyatdinov A; Vázquez-Santiago M; Brunel H; Martinez-Perez A; Aschard H; Soria JM
    BMC Bioinformatics; 2018 Feb; 19(1):68. PubMed ID: 29486711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure.
    Thornton T; McPeek MS
    Am J Hum Genet; 2010 Feb; 86(2):172-84. PubMed ID: 20137780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fast and Powerful Empirical Bayes Method for Genome-Wide Association Studies.
    Chang T; Wei J; Liang M; An B; Wang X; Zhu B; Xu L; Zhang L; Gao X; Chen Y; Li J; Gao H
    Animals (Basel); 2019 May; 9(6):. PubMed ID: 31159215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The benefits of permutation-based genome-wide association studies.
    John M; Korte A; Grimm DG
    J Exp Bot; 2024 Sep; 75(17):5377-5389. PubMed ID: 38954539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid of Restricted and Penalized Maximum Likelihood Method for Efficient Genome-Wide Association Study.
    Ren W; Liang Z; He S; Xiao J
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33138126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SUPER powerful method for genome wide association study.
    Wang Q; Tian F; Pan Y; Buckler ES; Zhang Z
    PLoS One; 2014; 9(9):e107684. PubMed ID: 25247812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of Summary Statistics from Linear Mixed Model Association on All-or-None Traits to Odds Ratio.
    Lloyd-Jones LR; Robinson MR; Yang J; Visscher PM
    Genetics; 2018 Apr; 208(4):1397-1408. PubMed ID: 29429966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional random fields for fast, large-scale genome-wide association studies.
    Huang JC; Meek C; Kadie C; Heckerman D
    PLoS One; 2011; 6(7):e21591. PubMed ID: 21765897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limitations of principal components in quantitative genetic association models for human studies.
    Yao Y; Ochoa A
    Elife; 2023 May; 12():. PubMed ID: 37140344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast-linear mixed model for genome-wide haplotype association analysis: application to agronomic traits in maize.
    Chen H; Hao Z; Zhao Y; Yang R
    BMC Genomics; 2020 Feb; 21(1):151. PubMed ID: 32046650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies.
    Warrington NM; Tilling K; Howe LD; Paternoster L; Pennell CE; Wu YY; Briollais L
    Stat Appl Genet Mol Biol; 2014 Oct; 13(5):567-87. PubMed ID: 25153607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Association with Uncertainty in the Genetic Similarity Matrix.
    Wang S; Ge S; Sobkowiak B; Wang L; Grandjean L; Colijn C; Elliott LT
    J Comput Biol; 2023 Feb; 30(2):189-203. PubMed ID: 36374242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.