These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25033469)

  • 21. Organogenesis in vitro.
    Iwasawa K; Takebe T
    Curr Opin Cell Biol; 2021 Dec; 73():84-91. PubMed ID: 34352726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-photon polymerized "nichoid" substrates maintain function of pluripotent stem cells when expanded under feeder-free conditions.
    Nava MM; Piuma A; Figliuzzi M; Cattaneo I; Bonandrini B; Zandrini T; Cerullo G; Osellame R; Remuzzi A; Raimondi MT
    Stem Cell Res Ther; 2016 Sep; 7(1):132. PubMed ID: 27613598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pluripotent stem cell-derived kidney organoids: An in vivo-like in vitro technology.
    Schutgens F; Verhaar MC; Rookmaaker MB
    Eur J Pharmacol; 2016 Nov; 790():12-20. PubMed ID: 27375081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
    Liu Y; Deng W
    Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organoids required! A new path to understanding human brain development and disease.
    Arlotta P
    Nat Methods; 2018 Jan; 15(1):27-29. PubMed ID: 29298289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generating a self-organizing kidney from pluripotent cells.
    Little MH; Takasato M
    Curr Opin Organ Transplant; 2015 Apr; 20(2):178-86. PubMed ID: 25856180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Making a Kidney Organoid Using the Directed Differentiation of Human Pluripotent Stem Cells.
    Takasato M; Little MH
    Methods Mol Biol; 2017; 1597():195-206. PubMed ID: 28361319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dental pulp of the third molar: a new source of pluripotent-like stem cells.
    Atari M; Gil-Recio C; Fabregat M; García-Fernández D; Barajas M; Carrasco MA; Jung HS; Alfaro FH; Casals N; Prosper F; Ferrés-Padró E; Giner L
    J Cell Sci; 2012 Jul; 125(Pt 14):3343-56. PubMed ID: 22467856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An organogenesis network-based comparative transcriptome analysis for understanding early human development in vivo and in vitro.
    Fang H; Jin W; Yang Y; Jin Y; Zhang J; Wang K
    BMC Syst Biol; 2011 Jul; 5():108. PubMed ID: 21733158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The rise of three-dimensional human brain cultures.
    Pașca SP
    Nature; 2018 Jan; 553(7689):437-445. PubMed ID: 29364288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confined 3D microenvironment regulates early differentiation in human pluripotent stem cells.
    Giobbe GG; Zagallo M; Riello M; Serena E; Masi G; Barzon L; Di Camillo B; Elvassore N
    Biotechnol Bioeng; 2012 Dec; 109(12):3119-32. PubMed ID: 22674472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells.
    Trott J; Tan EK; Ong S; Titmarsh DM; Denil SLIJ; Giam M; Wong CK; Wang J; Shboul M; Eio M; Cooper-White J; Cool SM; Rancati G; Stanton LW; Reversade B; Dunn NR
    Stem Cell Reports; 2017 Jun; 8(6):1675-1688. PubMed ID: 28591650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.
    Ho BX; Pek NMQ; Soh BS
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.
    Santos DP; Kiskinis E
    Methods Mol Biol; 2017; 1538():53-66. PubMed ID: 27943183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.
    Antonica F; Kasprzyk DF; Schiavo AA; Romitti M; Costagliola S
    Methods Mol Biol; 2017; 1597():85-95. PubMed ID: 28361312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome dynamics of human pluripotent stem cell-derived contracting cardiomyocytes using an embryoid body model with fetal bovine serum.
    Jung KB; Son YS; Lee H; Jung CR; Kim J; Son MY
    Mol Biosyst; 2017 Jul; 13(8):1565-1574. PubMed ID: 28671202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hollow fiber system for simple generation of human brain organoids.
    Zhu Y; Wang L; Yin F; Yu Y; Wang Y; Liu H; Wang H; Sun N; Liu H; Qin J
    Integr Biol (Camb); 2017 Sep; 9(9):774-781. PubMed ID: 28795726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of kidney tubular organoids from human pluripotent stem cells.
    Yamaguchi S; Morizane R; Homma K; Monkawa T; Suzuki S; Fujii S; Koda M; Hiratsuka K; Yamashita M; Yoshida T; Wakino S; Hayashi K; Sasaki J; Hori S; Itoh H
    Sci Rep; 2016 Dec; 6():38353. PubMed ID: 27982115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human fetal brain self-organizes into long-term expanding organoids.
    Hendriks D; Pagliaro A; Andreatta F; Ma Z; van Giessen J; Massalini S; López-Iglesias C; van Son GJF; DeMartino J; Damen JMA; Zoutendijk I; Staliarova N; Bredenoord AL; Holstege FCP; Peters PJ; Margaritis T; Chuva de Sousa Lopes S; Wu W; Clevers H; Artegiani B
    Cell; 2024 Feb; 187(3):712-732.e38. PubMed ID: 38194967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro.
    Vyas D; Baptista PM; Brovold M; Moran E; Gaston B; Booth C; Samuel M; Atala A; Soker S
    Hepatology; 2018 Feb; 67(2):750-761. PubMed ID: 28834615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.