These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25033764)

  • 1. Inflation of the type I error: investigations on regulatory recommendations for bioequivalence of highly variable drugs.
    Wonnemann M; Frömke C; Koch A
    Pharm Res; 2015 Jan; 32(1):135-43. PubMed ID: 25033764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the bioequivalence of highly-variable drugs and drug products.
    Tothfalusi L; Endrenyi L; Midha KK; Rawson MJ; Hubbard JW
    Pharm Res; 2001 Jun; 18(6):728-33. PubMed ID: 11474774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the leveling-off properties of the new bioequivalence limits for highly variable drugs of the EMA guideline.
    Karalis V; Symillides M; Macheras P
    Eur J Pharm Sci; 2011 Nov; 44(4):497-505. PubMed ID: 21945487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bioequivalence of highly variable drugs and drug products.
    Midha KK; Rawson MJ; Hubbard JW
    Int J Clin Pharmacol Ther; 2005 Oct; 43(10):485-98. PubMed ID: 16240706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence.
    Tothfalusi L; Endrenyi L; Arieta AG
    Clin Pharmacokinet; 2009; 48(11):725-43. PubMed ID: 19817502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limits for the scaled average bioequivalence of highly variable drugs and drug products.
    Tothfalusi L; Endrenyi L
    Pharm Res; 2003 Mar; 20(3):382-9. PubMed ID: 12669957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the reference scaled bioequivalence semi-replicate method with other approaches: focus on human exposure to drugs.
    Karalis V; Symillides M; Macheras P
    Eur J Pharm Sci; 2009 Aug; 38(1):55-63. PubMed ID: 19524039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling type I error in the reference-scaled bioequivalence evaluation of highly variable drugs.
    Ocaña J; Muñoz J
    Pharm Stat; 2019 Oct; 18(5):583-599. PubMed ID: 31190418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioequivalence: switchability and scaling.
    Midha KK; Rawson MJ; Hubbard JW
    Eur J Pharm Sci; 1998 Apr; 6(2):87-91. PubMed ID: 9795020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric mean ratio-dependent scaled bioequivalence limits with leveling-off properties.
    Karalis V; Macheras P; Symillides M
    Eur J Pharm Sci; 2005 Sep; 26(1):54-61. PubMed ID: 15955680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling type 1 error rate for sequential, bioequivalence studies with crossover designs.
    Rasmussen HE; Ma R; Wang JJ
    Pharm Stat; 2019 Jan; 18(1):96-105. PubMed ID: 30370634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach for widening the bioequivalence acceptance limits in the case of highly variable drugs.
    Boddy AW; Snikeris FC; Kringle RO; Wei GC; Oppermann JA; Midha KK
    Pharm Res; 1995 Dec; 12(12):1865-8. PubMed ID: 8786957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a scaling approach for the bioequivalence of highly variable drugs.
    Haidar SH; Makhlouf F; Schuirmann DJ; Hyslop T; Davit B; Conner D; Yu LX
    AAPS J; 2008 Sep; 10(3):450-4. PubMed ID: 18726698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods to control the empirical type I error rate in average bioequivalence tests for highly variable drugs.
    Deng Y; Zhou XH
    Stat Methods Med Res; 2020 Jun; 29(6):1650-1667. PubMed ID: 31478464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the upper sample size limit in two-stage bioequivalence designs.
    Karalis V
    Int J Pharm; 2013 Nov; 456(1):87-94. PubMed ID: 23954235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of group sequential and fixed sample size designs for bioequivalence trials with highly variable drugs.
    Knahl SIE; Lang B; Fleischer F; Kieser M
    Eur J Clin Pharmacol; 2018 May; 74(5):549-559. PubMed ID: 29362819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling or wider bioequivalence limits for highly variable drugs and for the special case of C(max).
    Tothfalusi L; Endrenyi L; Midha KK
    Int J Clin Pharmacol Ther; 2003 May; 41(5):217-25. PubMed ID: 12776813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioequivalence approaches for highly variable drugs and drug products.
    Haidar SH; Davit B; Chen ML; Conner D; Lee L; Li QH; Lionberger R; Makhlouf F; Patel D; Schuirmann DJ; Yu LX
    Pharm Res; 2008 Jan; 25(1):237-41. PubMed ID: 17891552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: A randomized, crossover clinical trial.
    Alloway RR; Vinks AA; Fukuda T; Mizuno T; King EC; Zou Y; Jiang W; Woodle ES; Tremblay S; Klawitter J; Klawitter J; Christians U
    PLoS Med; 2017 Nov; 14(11):e1002428. PubMed ID: 29135993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the type I error rate in two-stage sequential adaptive designs when testing for average bioequivalence.
    Maurer W; Jones B; Chen Y
    Stat Med; 2018 May; 37(10):1587-1607. PubMed ID: 29462835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.