These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25034006)

  • 1. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.
    Wang YY; Grygiel C; Dufour C; Sun JR; Wang ZG; Zhao YT; Xiao GQ; Cheng R; Zhou XM; Ren JR; Liu SD; Lei Y; Sun YB; Ritter R; Gruber E; Cassimi A; Monnet I; Bouffard S; Aumayr F; Toulemonde M
    Sci Rep; 2014 Jul; 4():5742. PubMed ID: 25034006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-hillock formation on CaF
    Szabo GL; Lehner M; Bischoff L; Pilz W; Muckenhuber H; Kentsch U; Aumayr F; Klingner N; Wilhelm RA
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34015773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An attempt to apply the inelastic thermal spike model to surface modifications of CaF
    Dufour C; Khomrenkov V; Wang YY; Wang ZG; Aumayr F; Toulemonde M
    J Phys Condens Matter; 2017 Mar; 29(9):095001. PubMed ID: 28129201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swift heavy ion irradiation of CaF2 - from grooves to hillocks in a single ion track.
    Gruber E; Salou P; Bergen L; El Kharrazi M; Lattouf E; Grygiel C; Wang Y; Benyagoub A; Levavasseur D; Rangama J; Lebius H; Ban-d'Etat B; Schleberger M; Aumayr F
    J Phys Condens Matter; 2016 Oct; 28(40):405001. PubMed ID: 27518588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of nanohillocks on CaF2 surfaces by single slow highly charged ions.
    El-Said AS; Heller R; Meissl W; Ritter R; Facsko S; Lemell C; Solleder B; Gebeshuber IC; Betz G; Toulemonde M; Möller W; Burgdörfer J; Aumayr F
    Phys Rev Lett; 2008 Jun; 100(23):237601. PubMed ID: 18643543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hillocks created for amorphizable and non-amorphizable ceramics irradiated with swift heavy ions: TEM study.
    Ishikawa N; Taguchi T; Okubo N
    Nanotechnology; 2017 Nov; 28(44):445708. PubMed ID: 29016363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagram for nanostructuring CaF(2) surfaces by slow highly charged ions.
    El-Said AS; Wilhelm RA; Heller R; Facsko S; Lemell C; Wachter G; Burgdörfer J; Ritter R; Aumayr F
    Phys Rev Lett; 2012 Sep; 109(11):117602. PubMed ID: 23005676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.
    Aumayr F; Facsko S; El-Said AS; Trautmann C; Schleberger M
    J Phys Condens Matter; 2011 Oct; 23(39):393001. PubMed ID: 21900733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evidence of crystalline hillocks created by irradiation of CeO₂ with swift heavy ions: TEM study.
    Ishikawa N; Okubo N; Taguchi T
    Nanotechnology; 2015 Sep; 26(35):355701. PubMed ID: 26245538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface nanostructures on Nb-doped SrTiO
    Ishikawa N; Fujimura Y; Kondo K; Szabo GL; Wilhelm RA; Ogawa H; Taguchi T
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35213855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of Anatase and Rutile Phases of TiO
    Rath H; Dash BN; Benyagoub A; Mishra NC
    Sci Rep; 2018 Aug; 8(1):11774. PubMed ID: 30082720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refractive index engineering through swift heavy ion irradiation of LiNbO
    Chen C; Pang L; Lu Q; Wang L; Tan Y; Wang Z; Chen F
    Sci Rep; 2017 Sep; 7(1):10805. PubMed ID: 28883479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latent track formation and recrystallization in swift heavy ion irradiation.
    Attariani H
    Phys Chem Chem Phys; 2022 Oct; 24(39):24480-24486. PubMed ID: 36193666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C
    Amekura H; Narumi K; Chiba A; Hirano Y; Yamada K; Tsuya D; Yamamoto S; Okubo N; Ishikawa N; Saitoh Y
    Sci Rep; 2019 Oct; 9(1):14980. PubMed ID: 31628343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion tracks in silicon formed by much lower energy deposition than the track formation threshold.
    Amekura H; Toulemonde M; Narumi K; Li R; Chiba A; Hirano Y; Yamada K; Yamamoto S; Ishikawa N; Okubo N; Saitoh Y
    Sci Rep; 2021 Jan; 11(1):185. PubMed ID: 33420182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Energy Heavy Ion Irradiation of Al
    Hanžek J; Dubček P; Fazinić S; Tomić Luketić K; Karlušić M
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-induced elongation of gold nanoparticles in silica by irradiation with Ag and Cu swift heavy ions: track radius and energy loss threshold.
    Dawi EA; Vredenberg AM; Rizza G; Toulemonde M
    Nanotechnology; 2011 May; 22(21):215607. PubMed ID: 21451236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for the hillock formation on graphite surfaces by 246 MeV Kr+ ions.
    Nagy P; Szabó B; Szabó ZS; Havancsák K; Biró LP; Gyulai J
    Ultramicroscopy; 2001 Jan; 86(1-2):31-8. PubMed ID: 11215631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.
    Lu F; Wang J; Lang M; Toulemonde M; Namavar F; Trautmann C; Zhang J; Ewing RC; Lian J
    Phys Chem Chem Phys; 2012 Sep; 14(35):12295-300. PubMed ID: 22858872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties.
    Nebogatikova NA; Antonova IV; Erohin SV; Kvashnin DG; Olejniczak A; Volodin VA; Skuratov AV; Krasheninnikov AV; Sorokin PB; Chernozatonskii LA
    Nanoscale; 2018 Aug; 10(30):14499-14509. PubMed ID: 30024005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.