These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25034393)

  • 1. Rotational propulsion enabled by inertia.
    Nadal F; Pak OS; Zhu L; Brandt L; Lauga E
    Eur Phys J E Soft Matter; 2014 Jul; 37(7):16. PubMed ID: 25034393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.
    Rosén T; Do-Quang M; Aidun CK; Lundell F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053017. PubMed ID: 26066258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Swimming by reciprocal motion at low Reynolds number.
    Qiu T; Lee TC; Mark AG; Morozov KI; Münster R; Mierka O; Turek S; Leshansky AM; Fischer P
    Nat Commun; 2014 Nov; 5():5119. PubMed ID: 25369018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal locomotion of dense swimmers in Stokes flow.
    Gonzalez-Rodriguez D; Lauga E
    J Phys Condens Matter; 2009 May; 21(20):204103. PubMed ID: 21825512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).
    Ngo V; McHenry MJ
    J Exp Biol; 2014 Aug; 217(Pt 15):2740-51. PubMed ID: 24855668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical exploration on buckling instability for directional control in flagellar propulsion.
    Huang W; Jawed MK
    Soft Matter; 2020 Jan; 16(3):604-613. PubMed ID: 31872849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of a push-me-pull-you swimmer at low Reynolds numbers.
    Silverberg O; Demir E; Mishler G; Hosoume B; Trivedi N; Tisch C; Plascencia D; Pak OS; Araci IE
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32620000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of a model microswimmer with applications to blebbing cells and mini-robots.
    Wang Q; Othmer HG
    J Math Biol; 2018 Jun; 76(7):1699-1763. PubMed ID: 29497820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing propulsive thrust of a driven filament at low Reynolds number via variable flexibility.
    Peng Z; Elfring GJ; Pak OS
    Soft Matter; 2017 Mar; 13(12):2339-2347. PubMed ID: 28267159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking of symmetry in microfluidic propulsion driven by artificial cilia.
    Khaderi SN; Baltussen MG; Anderson PD; den Toonder JM; Onck PR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):027302. PubMed ID: 20866944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random walk of a swimmer in a low-Reynolds-number medium.
    Garcia M; Berti S; Peyla P; Rafaï S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):035301. PubMed ID: 21517551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments.
    Leshansky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051911. PubMed ID: 20365010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propulsion and Instability of a Flexible Helical Rod Rotating in a Viscous Fluid.
    Jawed MK; Khouri NK; Da F; Grinspun E; Reis PM
    Phys Rev Lett; 2015 Oct; 115(16):168101. PubMed ID: 26550904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.
    Ali N; Asghar Z; Anwar Bég O; Sajid M
    J Theor Biol; 2016 May; 397():22-32. PubMed ID: 26903204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Reversible Swimming of Magnetically Assembled "Microscallops" in Non-Newtonian Fluids.
    Han K; Shields CW; Bharti B; Arratia PE; Velev OD
    Langmuir; 2020 Jun; 36(25):7148-7154. PubMed ID: 32011137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active particles in noninertial frames: How to self-propel on a carousel.
    Löwen H
    Phys Rev E; 2019 Jun; 99(6-1):062608. PubMed ID: 31330628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics of microswimmers--single particle motion and collective behavior: a review.
    Elgeti J; Winkler RG; Gompper G
    Rep Prog Phys; 2015 May; 78(5):056601. PubMed ID: 25919479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetically actuated artificial cilia: the effect of fluid inertia.
    Khaderi SN; den Toonder JM; Onck PR
    Langmuir; 2012 May; 28(20):7921-37. PubMed ID: 22416971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.