These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25035263)

  • 1. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis.
    Polic V; Auclair K
    Bioorg Med Chem; 2014 Oct; 22(20):5547-54. PubMed ID: 25035263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of chemical auxiliaries to control p450 enzymes for predictable oxidations at unactivated C-h bonds of substrates.
    Auclair K; Polic V
    Adv Exp Med Biol; 2015; 851():209-28. PubMed ID: 26002737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity.
    Behrendorff JB; Huang W; Gillam EM
    Biochem J; 2015 Apr; 467(1):1-15. PubMed ID: 25793416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
    Shoji O; Aiba Y; Watanabe Y
    Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis.
    Xu J; Wang C; Cong Z
    Chemistry; 2019 May; 25(28):6853-6863. PubMed ID: 30698852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of cytochrome P450 enzymes as biocatalysts in drug discovery and development.
    Gillam EM; Hayes MA
    Curr Top Med Chem; 2013; 13(18):2254-80. PubMed ID: 24047135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis.
    Rajakumara E; Saniya D; Bajaj P; Rajeshwari R; Giri J; Davari MD
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications.
    Li Z; Jiang Y; Guengerich FP; Ma L; Li S; Zhang W
    J Biol Chem; 2020 Jan; 295(3):833-849. PubMed ID: 31811088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen Surrogate Systems for Supporting Human Drug-Metabolizing Cytochrome P450 Enzymes.
    Strohmaier SJ; De Voss JJ; Jurva U; Andersson S; Gillam EMJ
    Drug Metab Dispos; 2020 Jun; 48(6):432-437. PubMed ID: 32238418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochromes P450 as useful biocatalysts: addressing the limitations.
    O'Reilly E; Köhler V; Flitsch SL; Turner NJ
    Chem Commun (Camb); 2011 Mar; 47(9):2490-501. PubMed ID: 21264369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective oxidation of carbolide C-H bonds by an engineered macrolide P450 mono-oxygenase.
    Li S; Chaulagain MR; Knauff AR; Podust LM; Montgomery J; Sherman DH
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18463-8. PubMed ID: 19833867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of engineered cytochromes P450 for accelerating drug discovery and development.
    Thomson RES; D'Cunha SA; Hayes MA; Gillam EMJ
    Adv Pharmacol; 2022; 95():195-252. PubMed ID: 35953156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology.
    Girvan HM; Munro AW
    Curr Opin Chem Biol; 2016 Apr; 31():136-45. PubMed ID: 27015292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing P450 Enzyme for Biotechnology and Synthetic Biology.
    Zhang L; Wang Q
    Chembiochem; 2022 Feb; 23(3):e202100439. PubMed ID: 34542923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled oxidation of remote sp3 C-H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity.
    Zhang K; Shafer BM; Demars MD; Stern HA; Fasan R
    J Am Chem Soc; 2012 Nov; 134(45):18695-704. PubMed ID: 23121379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application.
    Urlacher VB; Girhard M
    Trends Biotechnol; 2012 Jan; 30(1):26-36. PubMed ID: 21782265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the applicability of cytochrome P450s and other haemoproteins.
    Ariyasu S; Stanfield JK; Aiba Y; Shoji O
    Curr Opin Chem Biol; 2020 Dec; 59():155-163. PubMed ID: 32781431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of regio- and stereo-specificity in biosynthesis of bacterial heterodimeric diketopiperazines.
    Sun C; Luo Z; Zhang W; Tian W; Peng H; Lin Z; Deng Z; Kobe B; Jia X; Qu X
    Nat Commun; 2020 Dec; 11(1):6251. PubMed ID: 33288748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires.
    Hays AM; Dunn AR; Chiu R; Gray HB; Stout CD; Goodin DB
    J Mol Biol; 2004 Nov; 344(2):455-69. PubMed ID: 15522298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in the application of P450 based biocatalysts.
    Wei Y; Ang EL; Zhao H
    Curr Opin Chem Biol; 2018 Apr; 43():1-7. PubMed ID: 29100098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.