These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 25035303)
1. Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. Palberg T J Phys Condens Matter; 2014 Aug; 26(33):333101. PubMed ID: 25035303 [TBL] [Abstract][Full Text] [Related]
2. Experimental modelling of single-particle dynamic processes in crystallization by controlled colloidal assembly. Zhang TH; Liu XY Chem Soc Rev; 2014 Apr; 43(7):2324-47. PubMed ID: 24435291 [TBL] [Abstract][Full Text] [Related]
3. Seed- and wall-induced heterogeneous nucleation in charged colloidal model systems under microgravity. Schöpe HJ; Wette P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051405. PubMed ID: 21728532 [TBL] [Abstract][Full Text] [Related]
4. Crystallization in three- and two-dimensional colloidal suspensions. Gasser U J Phys Condens Matter; 2009 May; 21(20):203101. PubMed ID: 21825507 [TBL] [Abstract][Full Text] [Related]
5. In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Zhang KQ; Liu XY Nature; 2004 Jun; 429(6993):739-43. PubMed ID: 15201905 [TBL] [Abstract][Full Text] [Related]
6. Small changes in particle-size distribution dramatically delay and enhance nucleation in hard sphere colloidal suspensions. Schöpe HJ; Bryant G; van Megen W Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):060401. PubMed ID: 17280031 [TBL] [Abstract][Full Text] [Related]
7. Effect of polydispersity on the crystallization kinetics of suspensions of colloidal hard spheres when approaching the glass transition. Schöpe HJ; Bryant G; van Megen W J Chem Phys; 2007 Aug; 127(8):084505. PubMed ID: 17764267 [TBL] [Abstract][Full Text] [Related]
8. Multistep crystal nucleation: a kinetic study based on colloidal crystallization. Zhang TH; Liu XY J Phys Chem B; 2007 Dec; 111(50):14001-5. PubMed ID: 18027919 [TBL] [Abstract][Full Text] [Related]
9. Nucleation rates and induction times during colloidal crystallization: links between models and experiments. Dixit NM; Zukoski CF Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051602. PubMed ID: 12513493 [TBL] [Abstract][Full Text] [Related]
10. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. Dzwinel W; Yuen DA; Boryczko K J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneous versus homogeneous crystal nucleation of hard spheres. Espinosa JR; Vega C; Valeriani C; Frenkel D; Sanz E Soft Matter; 2019 Dec; 15(47):9625-9631. PubMed ID: 31613303 [TBL] [Abstract][Full Text] [Related]
12. Hard spheres: crystallization and glass formation. Pusey PN; Zaccarelli E; Valeriani C; Sanz E; Poon WC; Cates ME Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):4993-5011. PubMed ID: 19933124 [TBL] [Abstract][Full Text] [Related]
13. Numerical prediction of absolute crystallization rates in hard-sphere colloids. Auer S; Frenkel D J Chem Phys; 2004 Feb; 120(6):3015-29. PubMed ID: 15268449 [TBL] [Abstract][Full Text] [Related]
14. Colloids as model systems for metals and alloys: a case study of crystallization. Herlach DM; Klassen I; Wette P; Holland-Moritz D J Phys Condens Matter; 2010 Apr; 22(15):153101. PubMed ID: 21389545 [TBL] [Abstract][Full Text] [Related]
15. Crystallization in suspensions of hard spheres: a Monte Carlo and molecular dynamics simulation study. Schilling T; Dorosz S; Schöpe HJ; Opletal G J Phys Condens Matter; 2011 May; 23(19):194120. PubMed ID: 21525557 [TBL] [Abstract][Full Text] [Related]
16. Nucleation rate measurement of colloidal crystallization using microfluidic emulsion droplets. Gong T; Shen J; Hu Z; Marquez M; Cheng Z Langmuir; 2007 Mar; 23(6):2919-23. PubMed ID: 17305378 [TBL] [Abstract][Full Text] [Related]
17. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations. Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912 [TBL] [Abstract][Full Text] [Related]
18. Onset of heterogeneous crystal nucleation in colloidal suspensions. Cacciuto A; Auer S; Frenkel D Nature; 2004 Mar; 428(6981):404-6. PubMed ID: 15042084 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient. Sun X; Li Y; Zhang TH; Ma YQ; Zhang Z Langmuir; 2013 Jun; 29(24):7216-20. PubMed ID: 23311289 [TBL] [Abstract][Full Text] [Related]
20. Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach. Zhou Y; Wang H; Lin W; Lin L; Gao Y; Yang F; Du M; Fang W; Huang J; Sun D; Li Q J Colloid Interface Sci; 2013 Oct; 407():8-16. PubMed ID: 23871600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]