These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 25035869)

  • 1. Regulation of Saccharomyces cerevisiae MEF1 by Hda1p affects salt resistance of bdf1Δ mutant.
    Chen L; Wang M; Hou J; Liu L; Fu J; Shen Y; Zhang Z; Bao X
    FEMS Yeast Res; 2014 Jun; 14(4):575-85. PubMed ID: 25035869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HAL2 overexpression induces iron acquisition in bdf1Δ cells and enhances their salt resistance.
    Chen L; Wang M; Hou J; Fu J; Shen Y; Liu F; Zhang Z; Bao X
    Curr Genet; 2017 May; 63(2):229-239. PubMed ID: 27387517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hal2p functions in Bdf1p-involved salt stress response in Saccharomyces cerevisiae.
    Chen L; Liu L; Wang M; Fu J; Zhang Z; Hou J; Bao X
    PLoS One; 2013; 8(4):e62110. PubMed ID: 23614021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between BDF1 and BDF2 and their roles in regulating the yeast salt stress response.
    Fu J; Hou J; Liu L; Chen L; Wang M; Shen Y; Zhang Z; Bao X
    FEBS J; 2013 May; 280(9):1991-2001. PubMed ID: 23452060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yeast BDF1 regulates endocytosis via LSP1 under salt stress.
    Fu J; Hou J; Chen L; Wang M; Shen Y; Zhang Z; Bao X
    Curr Microbiol; 2015 May; 70(5):671-8. PubMed ID: 25572496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and comparative transcriptome analysis of bromodomain factor 1 in the salt stress response of Saccharomyces cerevisiae.
    Liu X; Zhang X; Wang C; Liu L; Lei M; Bao X
    Curr Microbiol; 2007 Apr; 54(4):325-30. PubMed ID: 17334841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bdf1p deletion affects mitochondrial function and causes apoptotic cell death under salt stress.
    Liu X; Yang H; Zhang X; Liu L; Lei M; Zhang Z; Bao X
    FEMS Yeast Res; 2009 Mar; 9(2):240-6. PubMed ID: 19220868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae.
    Green SR; Johnson AD
    Mol Biol Cell; 2004 Sep; 15(9):4191-202. PubMed ID: 15240822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae.
    Kim S; Benguria A; Lai CY; Jazwinski SM
    Mol Biol Cell; 1999 Oct; 10(10):3125-36. PubMed ID: 10512855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressor analysis of a histone defect identifies a new function for the hda1 complex in chromosome segregation.
    Kanta H; Laprade L; Almutairi A; Pinto I
    Genetics; 2006 May; 173(1):435-50. PubMed ID: 16415367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sin3 is involved in cell size control at Start in Saccharomyces cerevisiae.
    Stephan O; Koch C
    FEBS J; 2009 Jul; 276(14):3810-24. PubMed ID: 19523118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The serine/threonine protein phosphatase Sit4p activates multidrug resistance in Saccharomyces cerevisiae.
    Miranda MN; Masuda CA; Ferreira-Pereira A; Carvajal E; Ghislain M; Montero-Lomelí M
    FEMS Yeast Res; 2010 Sep; 10(6):674-86. PubMed ID: 20608983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bromodomain-containing protein Bdf1p acts as a phenotypic and transcriptional multicopy suppressor of YAF9 deletion in yeast.
    Bianchi MM; Costanzo G; Chelstowska A; Grabowska D; Mazzoni C; Piccinni E; Cavalli A; Ciceroni F; Rytka J; Slonimski PP; Frontali L; Negri R
    Mol Microbiol; 2004 Aug; 53(3):953-68. PubMed ID: 15255905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.
    Cheng C; Zhao X; Zhang M; Bai F
    FEMS Yeast Res; 2016 Mar; 16(2):fow010. PubMed ID: 26851403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-terminal short fragment of TUP1 confers resistance to 5-bromodeoxyuridine in the yeast Saccharomyces cerevisiae.
    Takayama S; Fujii M; Nakagawa Y; Miki K; Ayusawa D
    Biochem Biophys Res Commun; 2011 Jul; 411(1):25-31. PubMed ID: 21712029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms.
    Swinnen S; Henriques SF; Shrestha R; Ho PW; Sá-Correia I; Nevoigt E
    Microb Cell Fact; 2017 Jan; 16(1):7. PubMed ID: 28068993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YAP4 gene expression is induced in response to several forms of stress in Saccharomyces cerevisiae.
    Nevitt T; Pereira J; Rodrigues-Pousada C
    Yeast; 2004 Dec; 21(16):1365-74. PubMed ID: 15565582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial dysfunction enhances Gal4-dependent transcription.
    Jelicić B; Traven A; Filić V; Sopta M
    FEMS Microbiol Lett; 2005 Dec; 253(2):207-13. PubMed ID: 16239078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.