These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25035939)

  • 1. Aglycosylated full-length IgG antibodies: steps toward next-generation immunotherapeutics.
    Ju MS; Jung ST
    Curr Opin Biotechnol; 2014 Dec; 30():128-39. PubMed ID: 25035939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy.
    Jung ST; Kang TH; Kelton W; Georgiou G
    Curr Opin Biotechnol; 2011 Dec; 22(6):858-67. PubMed ID: 21420850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural consequences of aglycosylated IgG Fc variants evolved for FcγRI binding.
    Ju MS; Na JH; Yu YG; Kim JY; Jeong C; Jung ST
    Mol Immunol; 2015 Oct; 67(2 Pt B):350-6. PubMed ID: 26153451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal combination of beneficial mutations for improved ADCC effector function of aglycosylated antibodies.
    Yoon HW; Jo M; Ko S; Kwon HS; Lim CS; Ko BJ; Lee JC; Jung ST
    Mol Immunol; 2019 Oct; 114():62-71. PubMed ID: 31336250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avidity confers FcγR binding and immune effector function to aglycosylated immunoglobulin G1.
    Nesspor TC; Raju TS; Chin CN; Vafa O; Brezski RJ
    J Mol Recognit; 2012 Mar; 25(3):147-54. PubMed ID: 22407978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered aglycosylated full-length IgG Fc variants exhibiting improved FcγRIIIa binding and tumor cell clearance.
    Jo M; Kwon HS; Lee KH; Lee JC; Jung ST
    MAbs; 2018; 10(2):278-289. PubMed ID: 29173039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Aglycosylated IgG Variants with Wild-Type or Improved Binding Affinity to Human Fc Gamma RIIA and Fc Gamma RIIIAs.
    Chen TF; Sazinsky SL; Houde D; DiLillo DJ; Bird J; Li KK; Cheng GT; Qiu H; Engen JR; Ravetch JV; Wittrup KD
    J Mol Biol; 2017 Aug; 429(16):2528-2541. PubMed ID: 28694069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations.
    Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR
    Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the role of glycosylation in the structure of human IgG Fc.
    Borrok MJ; Jung ST; Kang TH; Monzingo AF; Georgiou G
    ACS Chem Biol; 2012 Sep; 7(9):1596-602. PubMed ID: 22747430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of IgG1 with asymmetrical Fc glycosylation.
    Ha S; Ou Y; Vlasak J; Li Y; Wang S; Vo K; Du Y; Mach A; Fang Y; Zhang N
    Glycobiology; 2011 Aug; 21(8):1087-96. PubMed ID: 21470983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies.
    Kayser V; Chennamsetty N; Voynov V; Forrer K; Helk B; Trout BL
    Biotechnol J; 2011 Jan; 6(1):38-44. PubMed ID: 20949542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E-clonal antibodies: selection of full-length IgG antibodies using bacterial periplasmic display.
    Mazor Y; Van Blarcom T; Iverson BL; Georgiou G
    Nat Protoc; 2008; 3(11):1766-77. PubMed ID: 18948976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc.
    Li CH; Narhi LO; Wen J; Dimitrova M; Wen ZQ; Li J; Pollastrini J; Nguyen X; Tsuruda T; Jiang Y
    Biochemistry; 2012 Dec; 51(50):10056-65. PubMed ID: 23078371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli.
    Lee YJ; Lee DH; Jeong KJ
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1237-46. PubMed ID: 24270917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aglycosylated antibodies and the methods of making and using them: WO2008030564.
    Jefferis R
    Expert Opin Ther Pat; 2009 Jan; 19(1):101-5. PubMed ID: 19441902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy.
    Mimura Y; Katoh T; Saldova R; O'Flaherty R; Izumi T; Mimura-Kimura Y; Utsunomiya T; Mizukami Y; Yamamoto K; Matsumoto T; Rudd PM
    Protein Cell; 2018 Jan; 9(1):47-62. PubMed ID: 28597152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. With or without sugar? (A)glycosylation of therapeutic antibodies.
    Hristodorov D; Fischer R; Linden L
    Mol Biotechnol; 2013 Jul; 54(3):1056-68. PubMed ID: 23097175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design.
    Caaveiro JM; Kiyoshi M; Tsumoto K
    Immunol Rev; 2015 Nov; 268(1):201-21. PubMed ID: 26497522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans.
    Goetze AM; Liu YD; Zhang Z; Shah B; Lee E; Bondarenko PV; Flynn GC
    Glycobiology; 2011 Jul; 21(7):949-59. PubMed ID: 21421994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants.
    Dashivets T; Thomann M; Rueger P; Knaupp A; Buchner J; Schlothauer T
    PLoS One; 2015; 10(12):e0143520. PubMed ID: 26657484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.