BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25036225)

  • 1. Remarkable pressure responses of metal-organic frameworks: proton transfer and linker coiling in zinc alkyl gates.
    Ortiz AU; Boutin A; Gagnon KJ; Clearfield A; Coudert FX
    J Am Chem Soc; 2014 Aug; 136(32):11540-5. PubMed ID: 25036225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-organic frameworks: the pressure is on.
    Coudert FX
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2015 Dec; 71(Pt 6):585-6. PubMed ID: 26634715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening.
    Ortiz AU; Boutin A; Fuchs AH; Coudert FX
    J Phys Chem Lett; 2013 Jun; 4(11):1861-5. PubMed ID: 26283122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-induced bond rearrangement and reversible phase transformation in a metal-organic framework.
    Spencer EC; Kiran MS; Li W; Ramamurty U; Ross NL; Cheetham AK
    Angew Chem Int Ed Engl; 2014 May; 53(22):5583-6. PubMed ID: 24711262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOFs under pressure: the reversible compression of a single crystal.
    Gagnon KJ; Beavers CM; Clearfield A
    J Am Chem Soc; 2013 Jan; 135(4):1252-5. PubMed ID: 23320490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative linear compressibility in nanoporous metal-organic frameworks rationalized by the empty channel structural mechanism.
    Colmenero F
    Phys Chem Chem Phys; 2021 Apr; 23(14):8508-8524. PubMed ID: 33876014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative linear compressibility of a metal-organic framework.
    Li W; Probert MR; Kosa M; Bennett TD; Thirumurugan A; Burwood RP; Parinello M; Howard JA; Cheetham AK
    J Am Chem Soc; 2012 Jul; 134(29):11940-3. PubMed ID: 22758218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colossal Negative Linear Compressibility in Porous Organic Salts.
    Zhao Y; Fan C; Pei C; Geng X; Xing G; Ben T; Qiu S
    J Am Chem Soc; 2020 Feb; 142(7):3593-3599. PubMed ID: 31967808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, water adsorption, and proton conductivity of solid-solution-type metal-organic frameworks Al(OH)(bdc-OH)(x)(bdc-NH2)(1-x).
    Yamada T; Shirai Y; Kitagawa H
    Chem Asian J; 2014 May; 9(5):1316-20. PubMed ID: 24652651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulator-to-Proton-Conductor Transition in a Dense Metal-Organic Framework.
    Tominaka S; Coudert FX; Dao TD; Nagao T; Cheetham AK
    J Am Chem Soc; 2015 May; 137(20):6428-31. PubMed ID: 25938518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexibility and sorption selectivity in rigid metal-organic frameworks: the impact of ether-functionalised linkers.
    Henke S; Schmid R; Grunwaldt JD; Fischer RA
    Chemistry; 2010 Dec; 16(48):14296-306. PubMed ID: 21140495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative Linear Compressibility in Organic Mineral Ammonium Oxalate Monohydrate with Hydrogen Bonding Wine-Rack Motifs.
    Qiao Y; Wang K; Yuan H; Yang K; Zou B
    J Phys Chem Lett; 2015 Jul; 6(14):2755-60. PubMed ID: 26266859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative Linear Compressibility Due to Layer Sliding in a Layered Metal-Organic Framework.
    Zeng Q; Wang K; Qiao Y; Li X; Zou B
    J Phys Chem Lett; 2017 Apr; 8(7):1436-1441. PubMed ID: 28296412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.
    Cai W; Katrusiak A
    Nat Commun; 2014 Jul; 5():4337. PubMed ID: 24993679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of crystalline proton-conducting pathways by water-induced transformations of hydrogen-bonding networks in a metal-organic framework.
    Sadakiyo M; Yamada T; Honda K; Matsui H; Kitagawa H
    J Am Chem Soc; 2014 May; 136(21):7701-7. PubMed ID: 24795110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology.
    Sahoo SC; Kundu T; Banerjee R
    J Am Chem Soc; 2011 Nov; 133(44):17950-8. PubMed ID: 21919488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity.
    Bazaga-García M; Colodrero RM; Papadaki M; Garczarek P; Zoń J; Olivera-Pastor P; Losilla ER; León-Reina L; Aranda MA; Choquesillo-Lazarte D; Demadis KD; Cabeza A
    J Am Chem Soc; 2014 Apr; 136(15):5731-9. PubMed ID: 24641594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of Gate-Opening and Breathing Phenomena in a Tailored Flexible Metal-Organic Framework.
    Hyun SM; Lee JH; Jung GY; Kim YK; Kim TK; Jeoung S; Kwak SK; Moon D; Moon HR
    Inorg Chem; 2016 Feb; 55(4):1920-5. PubMed ID: 26819090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships.
    Tan JC; Cheetham AK
    Chem Soc Rev; 2011 Feb; 40(2):1059-80. PubMed ID: 21221446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.