These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 25036498)
1. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Ito Y; Hirasawa T; Shimizu H Biosci Biotechnol Biochem; 2014; 78(1):151-9. PubMed ID: 25036498 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Raab AM; Gebhardt G; Bolotina N; Weuster-Botz D; Lang C Metab Eng; 2010 Nov; 12(6):518-25. PubMed ID: 20854924 [TBL] [Abstract][Full Text] [Related]
3. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660 [TBL] [Abstract][Full Text] [Related]
4. Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. Franco-Duarte R; Bessa D; Gonçalves F; Martins R; Silva-Ferreira AC; Schuller D; Sampaio P; Pais C FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28910984 [TBL] [Abstract][Full Text] [Related]
5. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Raab AM; Lang C Bioeng Bugs; 2011; 2(2):120-3. PubMed ID: 21637001 [TBL] [Abstract][Full Text] [Related]
6. Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation. Nakayama S; Morita T; Negishi H; Ikegami T; Sakaki K; Kitamoto D FEMS Yeast Res; 2008 Aug; 8(5):706-14. PubMed ID: 18399986 [TBL] [Abstract][Full Text] [Related]
8. Intracellular product recycling in high succinic acid producing yeast at low pH. Wahl SA; Bernal Martinez C; Zhao Z; van Gulik WM; Jansen MLA Microb Cell Fact; 2017 May; 16(1):90. PubMed ID: 28535757 [TBL] [Abstract][Full Text] [Related]
9. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation. Rezaei MN; Aslankoohi E; Verstrepen KJ; Courtin CM Int J Food Microbiol; 2015 Jul; 204():24-32. PubMed ID: 25828707 [TBL] [Abstract][Full Text] [Related]
10. [Preface for special issue on biobased chemicals (2013)]. Xing J Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1351-3. PubMed ID: 24432650 [TBL] [Abstract][Full Text] [Related]
11. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Lee JY; Kang CD; Lee SH; Park YK; Cho KM Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674 [TBL] [Abstract][Full Text] [Related]
12. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Borodina I; Nielsen J Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744 [TBL] [Abstract][Full Text] [Related]
13. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. Hubmann G; Thevelein JM; Nevoigt E Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025 [TBL] [Abstract][Full Text] [Related]
14. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014 [TBL] [Abstract][Full Text] [Related]
15. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae. Cao H; Yue M; Li S; Bai X; Zhao X; Du Y Appl Microbiol Biotechnol; 2011 Feb; 89(3):733-8. PubMed ID: 20938771 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle. Tsuji A; Okada S; Hols P; Satoh E Enzyme Microb Technol; 2013 Jul; 53(2):97-103. PubMed ID: 23769309 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Baek SH; Kwon EY; Kim YH; Hahn JS Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574 [TBL] [Abstract][Full Text] [Related]
18. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Volschenk H; Viljoen M; Grobler J; Petzold B; Bauer F; Subden RE; Young RA; Lonvaud A; Denayrolles M; van Vuuren HJ Nat Biotechnol; 1997 Mar; 15(3):253-7. PubMed ID: 9062925 [TBL] [Abstract][Full Text] [Related]
19. Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. Szeto SS; Reinke SN; Sykes BD; Lemire BD J Proteome Res; 2010 Dec; 9(12):6729-39. PubMed ID: 20964315 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]