These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 25036498)
21. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Xu G; Hua Q; Duan N; Liu L; Chen J Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684 [TBL] [Abstract][Full Text] [Related]
22. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. Yamanishi M; Matsuyama T ACS Synth Biol; 2012 May; 1(5):172-80. PubMed ID: 23651155 [TBL] [Abstract][Full Text] [Related]
23. Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis. Kawai K; Kanesaki Y; Yoshikawa H; Hirasawa T J Biosci Bioeng; 2019 Aug; 128(2):162-169. PubMed ID: 30803782 [TBL] [Abstract][Full Text] [Related]
24. [Advances in synthesis of succinic acid using yeast cell factories]. Zhong Y; Shang C; Wang Y; Li J; Liu C; Cui Z; Qi Q Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2644-2665. PubMed ID: 39174474 [TBL] [Abstract][Full Text] [Related]
25. Mitochondrial membrane transporters as attractive targets for the fermentative production of succinic acid from glycerol in Saccharomyces cerevisiae. Rendulić T; Perpelea A; Ortiz JPR; Casal M; Nevoigt E FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38587863 [TBL] [Abstract][Full Text] [Related]
26. [Progress in microbial production of succinic acid]. Liu R; Liang L; Wu M; Jiang M Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1386-97. PubMed ID: 24432654 [TBL] [Abstract][Full Text] [Related]
27. Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Thompson RA; Trinh CT Biotechnol Bioeng; 2014 Nov; 111(11):2200-8. PubMed ID: 24895195 [TBL] [Abstract][Full Text] [Related]
28. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Blazeck J; Miller J; Pan A; Gengler J; Holden C; Jamoussi M; Alper HS Appl Microbiol Biotechnol; 2014 Oct; 98(19):8155-64. PubMed ID: 24997118 [TBL] [Abstract][Full Text] [Related]
29. Pareto optimal metabolic engineering for the growth-coupled overproduction of sustainable chemicals. Amaradio MN; Ojha V; Jansen G; Gulisano M; Costanza J; Nicosia G Biotechnol Bioeng; 2022 Jul; 119(7):1890-1902. PubMed ID: 35419827 [TBL] [Abstract][Full Text] [Related]
30. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae. Zhu P; Luo R; Li Y; Chen X Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322 [TBL] [Abstract][Full Text] [Related]
31. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
32. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae]. Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1484-93. PubMed ID: 24432663 [TBL] [Abstract][Full Text] [Related]
33. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Yamada R; Wakita K; Mitsui R; Ogino H Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210 [TBL] [Abstract][Full Text] [Related]
34. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. Cheng C; Zhang M; Xue C; Bai F; Zhao X J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171 [TBL] [Abstract][Full Text] [Related]
35. Production of succinic acid by metabolically engineered microorganisms. Ahn JH; Jang YS; Lee SY Curr Opin Biotechnol; 2016 Dec; 42():54-66. PubMed ID: 26990278 [TBL] [Abstract][Full Text] [Related]
36. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Yin X; Li J; Shin HD; Du G; Liu L; Chen J Biotechnol Adv; 2015 Nov; 33(6 Pt 1):830-41. PubMed ID: 25902192 [TBL] [Abstract][Full Text] [Related]
37. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. Da Silva NA; Srikrishnan S FEMS Yeast Res; 2012 Mar; 12(2):197-214. PubMed ID: 22129153 [TBL] [Abstract][Full Text] [Related]
38. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production]. Yang F; Cao M; Jin Y; Yang X; Tian S Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890 [TBL] [Abstract][Full Text] [Related]
39. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Kim B; Cho BR; Hahn JS Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015 [TBL] [Abstract][Full Text] [Related]
40. Expression of exoinulinase genes in Saccharomyces cerevisiae to improve ethanol production from inulin sources. Yuan B; Wang SA; Li FL Biotechnol Lett; 2013 Oct; 35(10):1589-92. PubMed ID: 23743955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]