These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 25036498)

  • 41. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae.
    Shi S; Si T; Liu Z; Zhang H; Ang EL; Zhao H
    Sci Rep; 2016 May; 6():25675. PubMed ID: 27161023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production.
    Agren R; Otero JM; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Jul; 40(7):735-47. PubMed ID: 23608777
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae.
    Hara KY; Saito M; Kato H; Morikawa K; Kikukawa H; Nomura H; Fujimoto T; Hirono-Hara Y; Watanabe S; Kanamaru K; Kondo A
    Microb Cell Fact; 2019 Nov; 18(1):194. PubMed ID: 31699086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter.
    Kiriyama K; Hara KY; Kondo A
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):1021-7. PubMed ID: 22526809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae.
    Teo WS; Chang MW
    Biotechnol Bioeng; 2014 Jan; 111(1):144-51. PubMed ID: 23860786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae.
    Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH
    J Biotechnol; 2015 Sep; 209():23-30. PubMed ID: 26026703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of self-cloning, indigenous wine strains of Saccharomyces cerevisiae with enhanced glycerol and glutathione production.
    Hao RY; Liu YL; Wang ZY; Zhang BR
    Biotechnol Lett; 2012 Sep; 34(9):1711-7. PubMed ID: 22648686
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic engineering of Mannheimia succiniciproducens for succinic acid production based on elementary mode analysis with clustering.
    Kim WJ; Ahn JH; Kim HU; Kim TY; Lee SY
    Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27973705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Model-guided identification of gene deletion targets for metabolic engineering in Saccharomyces cerevisiae.
    Brochado AR; Patil KR
    Methods Mol Biol; 2014; 1152():281-94. PubMed ID: 24744040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advanced biofuel production by the yeast Saccharomyces cerevisiae.
    Buijs NA; Siewers V; Nielsen J
    Curr Opin Chem Biol; 2013 Jun; 17(3):480-8. PubMed ID: 23628723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.
    Yoshida S; Tanaka H; Hirayama M; Murata K; Kawai S
    Bioengineered; 2015; 6(6):347-50. PubMed ID: 26588105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae.
    Si T; Luo Y; Xiao H; Zhao H
    Metab Eng; 2014 Mar; 22():60-8. PubMed ID: 24412568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
    Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW
    Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.
    Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in Saccharomyces cerevisiae.
    Liu L; Zhang Y; Liu Z; Petranovic D; Nielsen J
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26220688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.
    Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    Biotechnol Bioeng; 2014 Sep; 111(9):1740-7. PubMed ID: 24752598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.