These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25036632)

  • 1. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica.
    Hickman AB; Ewis HE; Li X; Knapp JA; Laver T; Doss AL; Tolun G; Steven AC; Grishaev A; Bax A; Atkinson PW; Craig NL; Dyda F
    Cell; 2014 Jul; 158(2):353-367. PubMed ID: 25036632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular architecture of a eukaryotic DNA transposase.
    Hickman AB; Perez ZN; Zhou L; Musingarimi P; Ghirlando R; Hinshaw JE; Craig NL; Dyda F
    Nat Struct Mol Biol; 2005 Aug; 12(8):715-21. PubMed ID: 16041385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminus of the Hermes transposase contains a protein multimerization domain.
    Michel K; O'Brochta DA; Atkinson PW
    Insect Biochem Mol Biol; 2003 Oct; 33(10):959-70. PubMed ID: 14505689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hermes transposon distribution and structure in Musca domestica.
    Subramanian RA; Cathcart LA; Krafsur ES; Atkinson PW; O'Brochta DA
    J Hered; 2009; 100(4):473-80. PubMed ID: 19366812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family.
    Warren WD; Atkinson PW; O'Brochta DA
    Genet Res; 1994 Oct; 64(2):87-97. PubMed ID: 7813905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc-finger BED domains drive the formation of the active Hermes transpososome by asymmetric DNA binding.
    Lannes L; Furman CM; Hickman AB; Dyda F
    Nat Commun; 2023 Jul; 14(1):4470. PubMed ID: 37491363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification, crystallization and preliminary crystallographic analysis of the Hermes transposase.
    Perez ZN; Musingarimi P; Craig NL; Dyda F; Hickman AB
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Jun; 61(Pt 6):587-90. PubMed ID: 16511103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposition of hAT elements links transposable elements and V(D)J recombination.
    Zhou L; Mitra R; Atkinson PW; Hickman AB; Dyda F; Craig NL
    Nature; 2004 Dec; 432(7020):995-1001. PubMed ID: 15616554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposition of Mutator-like transposable elements (MULEs) resembles hAT and Transib elements and V(D)J recombination.
    Liu K; Wessler SR
    Nucleic Acids Res; 2017 Jun; 45(11):6644-6655. PubMed ID: 28482040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection.
    Barabas O; Ronning DR; Guynet C; Hickman AB; Ton-Hoang B; Chandler M; Dyda F
    Cell; 2008 Jan; 132(2):208-20. PubMed ID: 18243097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tn5 transposase loops DNA in the absence of Tn5 transposon end sequences.
    Adams CD; Schnurr B; Skoko D; Marko JF; Reznikoff WS
    Mol Microbiol; 2006 Dec; 62(6):1558-68. PubMed ID: 17074070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote.
    Richardson JM; Colloms SD; Finnegan DJ; Walkinshaw MD
    Cell; 2009 Sep; 138(6):1096-108. PubMed ID: 19766564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of hermes integrations in the germline of the yellow fever mosquito, Aedes aegypti.
    Jasinskiene N; Coates CJ; James AA
    Insect Mol Biol; 2000 Feb; 9(1):11-8. PubMed ID: 10672066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to transposon DNA.
    Watkins S; van Pouderoyen G; Sixma TK
    Nucleic Acids Res; 2004; 32(14):4306-12. PubMed ID: 15304566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution conformations of early intermediates in Mos1 transposition.
    Cuypers MG; Trubitsyna M; Callow P; Forsyth VT; Richardson JM
    Nucleic Acids Res; 2013 Feb; 41(3):2020-33. PubMed ID: 23262225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering.
    Voigt F; Wiedemann L; Zuliani C; Querques I; Sebe A; Mátés L; Izsvák Z; Ivics Z; Barabas O
    Nat Commun; 2016 Mar; 7():11126. PubMed ID: 27025571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA.
    van Pouderoyen G; Ketting RF; Perrakis A; Plasterk RH; Sixma TK
    EMBO J; 1997 Oct; 16(19):6044-54. PubMed ID: 9312061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization through the RING-Finger Domain Attenuates Excision Activity of the piggyBac Transposase.
    Sharma R; Nirwal S; Narayanan N; Nair DT
    Biochemistry; 2018 May; 57(20):2913-2922. PubMed ID: 29750515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis for the Inverted Repeat Preferences of mariner Transposases.
    Trubitsyna M; Grey H; Houston DR; Finnegan DJ; Richardson JM
    J Biol Chem; 2015 May; 290(21):13531-40. PubMed ID: 25869132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes.
    Blundell-Hunter G; Tellier M; Chalmers R
    Nucleic Acids Res; 2018 Oct; 46(18):9637-9646. PubMed ID: 30184164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.