BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25036648)

  • 1. Role of thyroid hormone receptor-α1 in endochondral ossification.
    Williams GR
    Endocrinology; 2014 Aug; 155(8):2747-50. PubMed ID: 25036648
    [No Abstract]   [Full Text] [Related]  

  • 2. Chondrocytes play a major role in the stimulation of bone growth by thyroid hormone.
    Desjardin C; Charles C; Benoist-Lasselin C; Riviere J; Gilles M; Chassande O; Morgenthaler C; Laloé D; Lecardonnel J; Flamant F; Legeai-Mallet L; Schibler L
    Endocrinology; 2014 Aug; 155(8):3123-35. PubMed ID: 24914940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
    Mackie EJ; Ahmed YA; Tatarczuch L; Chen KS; Mirams M
    Int J Biochem Cell Biol; 2008; 40(1):46-62. PubMed ID: 17659995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice.
    Cheng S; Aghajanian P; Pourteymoor S; Alarcon C; Mohan S
    Sci Rep; 2016 Oct; 6():35748. PubMed ID: 27775044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification.
    Niedermair T; Kuhn V; Doranehgard F; Stange R; Wieskötter B; Beckmann J; Salmen P; Springorum HR; Straub RH; Zimmer A; Grifka J; Grässel S
    Matrix Biol; 2014 Sep; 38():22-35. PubMed ID: 25063231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone development.
    Olsen BR; Reginato AM; Wang W
    Annu Rev Cell Dev Biol; 2000; 16():191-220. PubMed ID: 11031235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Hypertrophic chondrocytes: Programmed cell death or stem cell reservoir?].
    Severmann AC; Vortkamp A
    Z Rheumatol; 2015 Dec; 74(10):898-901. PubMed ID: 26555549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice.
    Takarada T; Hinoi E; Nakazato R; Ochi H; Xu C; Tsuchikane A; Takeda S; Karsenty G; Abe T; Kiyonari H; Yoneda Y
    J Bone Miner Res; 2013 Oct; 28(10):2064-9. PubMed ID: 23553905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor alpha1 or beta.
    O'Shea PJ; Bassett JH; Sriskantharajah S; Ying H; Cheng SY; Williams GR
    Mol Endocrinol; 2005 Dec; 19(12):3045-59. PubMed ID: 16051666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endochondral ossification and the evolution of limb proportions.
    Rolian C
    Wiley Interdiscip Rev Dev Biol; 2020 Jul; 9(4):e373. PubMed ID: 31997553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensatory role of thyroid hormone receptor (TR) alpha 1 in resistance to thyroid hormone: study in mice with a targeted mutation in the TR beta gene and deficient in TR alpha 1.
    Suzuki H; Cheng SY
    Mol Endocrinol; 2003 Aug; 17(8):1647-55. PubMed ID: 12750454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes.
    Hu DP; Ferro F; Yang F; Taylor AJ; Chang W; Miclau T; Marcucio RS; Bahney CS
    Development; 2017 Jan; 144(2):221-234. PubMed ID: 28096214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188.
    Maes C; Carmeliet P; Moermans K; Stockmans I; Smets N; Collen D; Bouillon R; Carmeliet G
    Mech Dev; 2002 Feb; 111(1-2):61-73. PubMed ID: 11804779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evc works in chondrocytes and osteoblasts to regulate multiple aspects of growth plate development in the appendicular skeleton and cranial base.
    Pacheco M; Valencia M; Caparrós-Martín JA; Mulero F; Goodship JA; Ruiz-Perez VL
    Bone; 2012 Jan; 50(1):28-41. PubMed ID: 21911092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress on the related mechanism in the development of bone and joint].
    Lü XM; Deng LF; Yang QM
    Yi Chuan; 2004 Mar; 26(2):231-4. PubMed ID: 15639993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation.
    Gomez C; Burt-Pichat B; Mallein-Gerin F; Merle B; Delmas PD; Skerry TM; Vico L; Malaval L; Chenu C
    Dev Dyn; 2005 Oct; 234(2):393-403. PubMed ID: 16145665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wnt and hedgehog signaling pathways in bone development.
    Day TF; Yang Y
    J Bone Joint Surg Am; 2008 Feb; 90 Suppl 1():19-24. PubMed ID: 18292352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hormone regulation of chondrocyte differentiation and endochondral bone formation.
    Stevens DA; Williams GR
    Mol Cell Endocrinol; 1999 May; 151(1-2):195-204. PubMed ID: 10411334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Thyroid hormone and skeletal metabolism].
    Onigata K
    Clin Calcium; 2014 Jun; 24(6):821-7. PubMed ID: 24870832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid hormone receptor-β1 signaling is critically involved in regulating secondary ossification via promoting transcription of the Ihh gene in the epiphysis.
    Xing W; Aghajanian P; Goodluck H; Kesavan C; Cheng S; Pourteymoor S; Watt H; Alarcon C; Mohan S
    Am J Physiol Endocrinol Metab; 2016 May; 310(10):E846-54. PubMed ID: 27026086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.