These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25036648)

  • 41. [Transdifferentiation of chondrocytes into osteogenic cells].
    Włodarski K; Włodarski P; Galus R; Brodzikowska A
    Chir Narzadow Ruchu Ortop Pol; 2006; 71(3):199-203. PubMed ID: 17131726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide analyses of gene expression during mouse endochondral ossification.
    James CG; Stanton LA; Agoston H; Ulici V; Underhill TM; Beier F
    PLoS One; 2010 Jan; 5(1):e8693. PubMed ID: 20084171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Essential role of hypertrophic chondrocytes in endochondral bone development.
    Chung UI
    Endocr J; 2004 Feb; 51(1):19-24. PubMed ID: 15004404
    [No Abstract]   [Full Text] [Related]  

  • 44. Molecular mechanisms of thyroid hormone effects on bone growth and function.
    Harvey CB; O'Shea PJ; Scott AJ; Robson H; Siebler T; Shalet SM; Samarut J; Chassande O; Williams GR
    Mol Genet Metab; 2002 Jan; 75(1):17-30. PubMed ID: 11825060
    [No Abstract]   [Full Text] [Related]  

  • 45. New insights in bone biology: unmasking skeletal effects of the extracellular calcium-sensing receptor.
    Brown EM; Lian JB
    Sci Signal; 2008 Sep; 1(35):pe40. PubMed ID: 18765829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond.
    Hallett SA; Ono W; Ono N
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795305
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of action of thyroid hormones in the skeleton.
    Wojcicka A; Bassett JH; Williams GR
    Biochim Biophys Acta; 2013 Jul; 1830(7):3979-86. PubMed ID: 22634735
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix.
    Roach HI
    J Bone Miner Res; 1997 May; 12(5):795-805. PubMed ID: 9144346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts.
    Qin X; Jiang Q; Nagano K; Moriishi T; Miyazaki T; Komori H; Ito K; Mark KV; Sakane C; Kaneko H; Komori T
    PLoS Genet; 2020 Nov; 16(11):e1009169. PubMed ID: 33253203
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deiodinase-mediated thyroid hormone inactivation minimizes thyroid hormone signaling in the early development of fetal skeleton.
    Capelo LP; Beber EH; Huang SA; Zorn TM; Bianco AC; Gouveia CH
    Bone; 2008 Nov; 43(5):921-30. PubMed ID: 18682303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vis-à-vis cells and the priming of bone formation.
    Riminucci M; Bradbeer JN; Corsi A; Gentili C; Descalzi F; Cancedda R; Bianco P
    J Bone Miner Res; 1998 Dec; 13(12):1852-61. PubMed ID: 9844103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cbfa1 couples chondrocytes maturation and endochondral ossification in rat mandibular condylar cartilage.
    Rabie AB; Tang GH; Hägg U
    Arch Oral Biol; 2004 Feb; 49(2):109-18. PubMed ID: 14693204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.
    Day TF; Guo X; Garrett-Beal L; Yang Y
    Dev Cell; 2005 May; 8(5):739-50. PubMed ID: 15866164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling.
    Nakamura Y; Inloes JB; Katagiri T; Kobayashi T
    Mol Cell Biol; 2011 Jul; 31(14):3019-28. PubMed ID: 21576357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Defective endochondral ossification in mice with strongly compromised expression of JunB.
    Hess J; Hartenstein B; Teurich S; Schmidt D; Schorpp-Kistner M; Angel P
    J Cell Sci; 2003 Nov; 116(Pt 22):4587-96. PubMed ID: 14576352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Association of cartilage-specific deletion of peroxisome proliferator-activated receptor γ with abnormal endochondral ossification and impaired cartilage growth and development in a murine model.
    Monemdjou R; Vasheghani F; Fahmi H; Perez G; Blati M; Taniguchi N; Lotz M; St-Arnaud R; Pelletier JP; Martel-Pelletier J; Beier F; Kapoor M
    Arthritis Rheum; 2012 May; 64(5):1551-61. PubMed ID: 22131019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The localization of thyroid hormone receptor mRNAs in human bone.
    Abu EO; Horner A; Teti A; Chatterjee VK; Compston JE
    Thyroid; 2000 Apr; 10(4):287-93. PubMed ID: 10807056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The direct role of vitamin D on bone homeostasis.
    St-Arnaud R
    Arch Biochem Biophys; 2008 May; 473(2):225-30. PubMed ID: 18424254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chondrocyte-specific regulatory activity of Runx2 is essential for survival and skeletal development.
    Chen H; Ghori-Javed FY; Rashid H; Serra R; Gutierrez SE; Javed A
    Cells Tissues Organs; 2011; 194(2-4):161-5. PubMed ID: 21597273
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation.
    Qiu J; Ma XL; Wang X; Chen H; Huang BR
    Mol Cell Biochem; 2012 Feb; 361(1-2):197-208. PubMed ID: 21997736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.