BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 25036830)

  • 1. Identification of interacting proteins for calcium-dependent protein kinase 8 by a novel screening system based on bimolecular fluorescence complementation.
    Kamimura M; Han Y; Kito N; Che FS
    Biosci Biotechnol Biochem; 2014; 78(3):438-47. PubMed ID: 25036830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system.
    Singh R; Lee JE; Dangol S; Choi J; Yoo RH; Moon JS; Shim JK; Rakwal R; Agrawal GK; Jwa NS
    Proteomics; 2014 Jan; 14(1):105-15. PubMed ID: 24243689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimolecular-fluorescence complementation assay to monitor kinase-substrate interactions in vivo.
    Pusch S; Dissmeyer N; Schnittger A
    Methods Mol Biol; 2011; 779():245-57. PubMed ID: 21837571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice.
    Wen JQ; Oono K; Imai R
    Plant Physiol; 2002 Aug; 129(4):1880-91. PubMed ID: 12177502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing bimolecular fluorescence complementation (BiFC) to assay protein-protein interaction in plants.
    Ohad N; Yalovsky S
    Methods Mol Biol; 2010; 655():347-58. PubMed ID: 20734272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation.
    Gehl C; Waadt R; Kudla J; Mendel RR; Hänsch R
    Mol Plant; 2009 Sep; 2(5):1051-8. PubMed ID: 19825679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells.
    Schütze K; Harter K; Chaban C
    Methods Mol Biol; 2009; 479():189-202. PubMed ID: 19083187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a.
    Purwestri YA; Ogaki Y; Tamaki S; Tsuji H; Shimamoto K
    Plant Cell Physiol; 2009 Mar; 50(3):429-38. PubMed ID: 19179350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging protein-protein interactions in plant cells by bimolecular fluorescence complementation assay.
    Weinthal D; Tzfira T
    Trends Plant Sci; 2009 Feb; 14(2):59-63. PubMed ID: 19150604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a protein-protein interaction network of the CBL-interacting protein kinase 8 from sugarcane.
    Farani TF; Gentile A; Tavares RG; Ribeiro C; Menossi M
    Genet Mol Res; 2015 Jan; 14(1):483-91. PubMed ID: 25729982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BiFC Assay to Detect Calmodulin Binding to Plant Receptor Kinases.
    Fischer C; Sauter M; Dietrich P
    Methods Mol Biol; 2017; 1621():141-149. PubMed ID: 28567651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks.
    Kolukisaoglu U; Weinl S; Blazevic D; Batistic O; Kudla J
    Plant Physiol; 2004 Jan; 134(1):43-58. PubMed ID: 14730064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins.
    Li M; Doll J; Weckermann K; Oecking C; Berendzen KW; Schöffl F
    Eur J Cell Biol; 2010; 89(2-3):126-32. PubMed ID: 19945192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments.
    Ohashi K; Kiuchi T; Shoji K; Sampei K; Mizuno K
    Biotechniques; 2012 Jan; 52(1):45-50. PubMed ID: 22229727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives.
    Kodama Y; Hu CD
    Biotechniques; 2012 Nov; 53(5):285-98. PubMed ID: 23148879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta.
    Citovsky V; Lee LY; Vyas S; Glick E; Chen MH; Vainstein A; Gafni Y; Gelvin SB; Tzfira T
    J Mol Biol; 2006 Oct; 362(5):1120-31. PubMed ID: 16949607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene cloning, bacterial expression, and purification of a novel rice (Oryza sativa L.) ubiquitin-related protein, RURM1.
    Tsukiyama T; Lee J; Okumoto Y; Teraishi M; Tanisaka T; Inouye K
    Biosci Biotechnol Biochem; 2010; 74(2):430-2. PubMed ID: 20139593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BiFC for protein-protein interactions and protein topology: discussing an integrative approach for an old technique.
    Stefano G; Renna L; Brandizzi F
    Methods Mol Biol; 2015; 1242():173-82. PubMed ID: 25408453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions.
    Chu J; Zhang Z; Zheng Y; Yang J; Qin L; Lu J; Huang ZL; Zeng S; Luo Q
    Biosens Bioelectron; 2009 Sep; 25(1):234-9. PubMed ID: 19596565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry.
    Morell M; Espargaro A; Aviles FX; Ventura S
    Nat Protoc; 2008; 3(1):22-33. PubMed ID: 18193018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.