These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 25036953)

  • 21. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
    Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP
    mBio; 2016 May; 7(3):. PubMed ID: 27222467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CooC1 from Carboxydothermus hydrogenoformans is a nickel-binding ATPase.
    Jeoung JH; Giese T; Grünwald M; Dobbek H
    Biochemistry; 2009 Dec; 48(48):11505-13. PubMed ID: 19883128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of potassium cyanide with the [Ni-4Fe-5S] active site cluster of CO dehydrogenase from Carboxydothermus hydrogenoformans.
    Ha SW; Korbas M; Klepsch M; Meyer-Klaucke W; Meyer O; Svetlitchnyi V
    J Biol Chem; 2007 Apr; 282(14):10639-46. PubMed ID: 17277357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum.
    Jeon WB; Cheng J; Ludden PW
    J Biol Chem; 2001 Oct; 276(42):38602-9. PubMed ID: 11507093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nickel-dependent oligomerization of the alpha subunit of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase.
    Tan X; Kagiampakis I; Surovtsev IV; Demeler B; Lindahl PA
    Biochemistry; 2007 Oct; 46(41):11606-13. PubMed ID: 17887777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica.
    Shin W; Lee SH; Shin JW; Lee SP; Kim Y
    J Am Chem Soc; 2003 Dec; 125(48):14688-9. PubMed ID: 14640627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of sodium sulfide on Ni-containing carbon monoxide dehydrogenases.
    Feng J; Lindahl PA
    J Am Chem Soc; 2004 Jul; 126(29):9094-100. PubMed ID: 15264843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases.
    Jeoung JH; Giese T; Grünwald M; Dobbek H
    J Mol Biol; 2010 Mar; 396(4):1165-79. PubMed ID: 20064527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans.
    Soboh B; Linder D; Hedderich R
    Eur J Biochem; 2002 Nov; 269(22):5712-21. PubMed ID: 12423371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a ligand CO that is required for catalytic activity of CO dehydrogenase from Rhodospirillum rubrum.
    Heo J; Staples CR; Halbleib CM; Ludden PW
    Biochemistry; 2000 Jul; 39(27):7956-63. PubMed ID: 10891076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding of CO to structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase.
    Harrop TC; Olmstead MM; Mascharak PK
    Chem Commun (Camb); 2004 Aug; (15):1744-5. PubMed ID: 15278165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis.
    Fukuyama Y; Omae K; Yoneda Y; Yoshida T; Sako Y
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728389
    [No Abstract]   [Full Text] [Related]  

  • 33. O2 Inhibition of Ni-Containing CO Dehydrogenase Is Partly Reversible.
    Merrouch M; Hadj-Saïd J; Domnik L; Dobbek H; Léger C; Dementin S; Fourmond V
    Chemistry; 2015 Dec; 21(52):18934-8. PubMed ID: 26568460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of carbon disulfide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, carbon monoxide dehydrogenase, from Clostridium thermoaceticum.
    Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1994 Aug; 33(32):9769-77. PubMed ID: 8068656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role for nickel-iron cofactors in biological carbon monoxide and carbon dioxide utilization.
    Kung Y; Drennan CL
    Curr Opin Chem Biol; 2011 Apr; 15(2):276-83. PubMed ID: 21130022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression and characterization of Pantoea CO dehydrogenase to utilize CO-containing industrial waste gas for expanding the versatility of CO dehydrogenase.
    Choi ES; Min K; Kim GJ; Kwon I; Kim YH
    Sci Rep; 2017 Mar; 7():44323. PubMed ID: 28290544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ.
    Kerby RL; Ludden PW; Roberts GP
    J Bacteriol; 1997 Apr; 179(7):2259-66. PubMed ID: 9079911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different modes of carbon monoxide binding to acetyl-CoA synthase and the role of a conserved phenylalanine in the coordination environment of nickel.
    Gencic S; Kelly K; Ghebreamlak S; Duin EC; Grahame DA
    Biochemistry; 2013 Mar; 52(10):1705-16. PubMed ID: 23394607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox-dependent CO2 reduction activity of CO dehydrogenase from Rhodospirillum rubrum.
    Heo J; Staples CR; Ludden PW
    Biochemistry; 2001 Jun; 40(25):7604-11. PubMed ID: 11412114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ FTIR study of CO
    Lee JE; Yamaguchi A; Ooka H; Kazami T; Miyauchi M; Kitadai N; Nakamura R
    Chem Commun (Camb); 2021 Apr; 57(26):3267-3270. PubMed ID: 33650585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.