These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25036998)

  • 61. Statistical length measurement method by direct imaging of carbon nanotubes.
    Bengio EA; Tsentalovich DE; Behabtu N; Kleinerman O; Kesselman E; Schmidt J; Talmon Y; Pasquali M
    ACS Appl Mater Interfaces; 2014 May; 6(9):6139-46. PubMed ID: 24773046
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Imaging methods for determining uptake and toxicity of carbon nanotubes in vitro and in vivo.
    Nerl HC; Cheng C; Goode AE; Bergin SD; Lich B; Gass M; Porter AE
    Nanomedicine (Lond); 2011 Jul; 6(5):849-65. PubMed ID: 21793676
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Responses to elevated CO
    Jeffrey JD; Hannan KD; Hasler CT; Suski CD
    J Comp Physiol B; 2017 Jan; 187(1):87-101. PubMed ID: 27473728
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantitative detection of single walled carbon nanotube in water using DNA and magnetic fluorescent spheres.
    Mota LC; Ureña-Benavides EE; Yoon Y; Son A
    Environ Sci Technol; 2013 Jan; 47(1):493-501. PubMed ID: 23214724
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Cadmium accumulation in tissues of the mussel Mytilus galloprovincialis].
    Skul'skiĭ IA; Pivovarova NB; Kulebakina LG
    Zh Evol Biokhim Fiziol; 1987; 23(3):281-6. PubMed ID: 3618014
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A review on the removal of antibiotics by carbon nanotubes.
    Cong Q; Yuan X; Qu J
    Water Sci Technol; 2013; 68(8):1679-87. PubMed ID: 24185047
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes.
    Petersen EJ; Zhang L; Mattison NT; O'Carroll DM; Whelton AJ; Uddin N; Nguyen T; Huang Q; Henry TB; Holbrook RD; Chen KL
    Environ Sci Technol; 2011 Dec; 45(23):9837-56. PubMed ID: 21988187
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functionalized carbon nanotubes in drug design and discovery.
    Prato M; Kostarelos K; Bianco A
    Acc Chem Res; 2008 Jan; 41(1):60-8. PubMed ID: 17867649
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes.
    Yang K; Liu Z
    Curr Drug Metab; 2012 Oct; 13(8):1057-67. PubMed ID: 22380009
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multifunctional and recollectable carbon nanotube ponytails for water purification.
    Wang H; Ma H; Zheng W; An D; Na C
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9426-34. PubMed ID: 24806877
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Intrinsic variability in shell and soft tissue growth of the freshwater mussel Lampsilis siliquoidea.
    Larson JH; Eckert NL; Bartsch MR
    PLoS One; 2014; 9(11):e112252. PubMed ID: 25411848
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Carbon nanotubes size classification, characterization and nasal airway deposition.
    Su WC; Cheng YS
    Inhal Toxicol; 2014 Dec; 26(14):843-52. PubMed ID: 25289729
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detection of single walled carbon nanotubes by monitoring embedded metals.
    Reed RB; Goodwin DG; Marsh KL; Capracotta SS; Higgins CP; Fairbrother DH; Ranville JF
    Environ Sci Process Impacts; 2013 Jan; 15(1):204-13. PubMed ID: 24592437
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diels-Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability.
    Mata D; Amaral M; Fernandes AJ; Colaço B; Gama A; Paiva MC; Gomes PS; Silva RF; Fernandes MH
    Nanoscale; 2015; 7(20):9238-51. PubMed ID: 25928241
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Time-dependent degradation of carbon nanotubes correlates with decreased reactive oxygen species generation in macrophages.
    Yang M; Zhang M; Nakajima H; Yudasaka M; Iijima S; Okazaki T
    Int J Nanomedicine; 2019; 14():2797-2807. PubMed ID: 31118611
    [No Abstract]   [Full Text] [Related]  

  • 77. Carbon nanotubes as a scaffold for spermatogonial cell maintenance.
    Rafeeqi T; Kaul G
    J Biomed Nanotechnol; 2010 Dec; 6(6):710-7. PubMed ID: 21361137
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment.
    Wang F; Yao J; Liu H; Liu R; Chen H; Yi Z; Yu Q; Ma L; Xing B
    J Hazard Mater; 2015 Jul; 292():137-45. PubMed ID: 25802063
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characterization of different carbon nanotubes for the development of a mucoadhesive drug delivery system for intravesical treatment of bladder cancer.
    Rieger C; Kunhardt D; Kaufmann A; Schendel D; Huebner D; Erdmann K; Propping S; Wirth MP; Schwenzer B; Fuessel S; Hampel S
    Int J Pharm; 2015 Feb; 479(2):357-63. PubMed ID: 25595385
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures.
    Zhang D; Pan B; Cook RL; Xing B
    Environ Pollut; 2015 Jan; 196():292-99. PubMed ID: 25463725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.