BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25037013)

  • 21. Update on wide- and ultra-widefield retinal imaging.
    Shoughy SS; Arevalo JF; Kozak I
    Indian J Ophthalmol; 2015 Jul; 63(7):575-81. PubMed ID: 26458474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Panoramic autofluorescence: highlighting retinal pathology.
    Slotnick S; Sherman J
    Optom Vis Sci; 2012 May; 89(5):E575-84. PubMed ID: 22446719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endoscopic fluorescein angiography.
    Uram M
    Ophthalmic Surg Lasers; 1996 Oct; 27(10):849-55. PubMed ID: 8895206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility and clinical utility of ultra-widefield indocyanine green angiography.
    Klufas MA; Yannuzzi NA; Pang CE; Srinivas S; Sadda SR; Freund KB; Kiss S
    Retina; 2015 Mar; 35(3):508-20. PubMed ID: 25250480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated quantitative characterisation of retinal vascular leakage and microaneurysms in ultra-widefield fluorescein angiography.
    Ehlers JP; Wang K; Vasanji A; Hu M; Srivastava SK
    Br J Ophthalmol; 2017 Jun; 101(6):696-699. PubMed ID: 28432113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-widefield fundus fluorescein angiography in the diagnosis and management of retinal vasculitis.
    Jones NP; Sala-Puigdollers A; Stanga PE
    Eye (Lond); 2017 Nov; 31(11):1546-1549. PubMed ID: 28574499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical application of ultra-widefield fundus autofluorescence.
    Xu A; Chen C
    Int Ophthalmol; 2021 Feb; 41(2):727-741. PubMed ID: 33040254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection and quantification of hyperfluorescent leakage by computer analysis of fundus fluorescein angiograms.
    Phillips RP; Ross PG; Tyska M; Sharp PF; Forrester JV
    Graefes Arch Clin Exp Ophthalmol; 1991; 229(4):329-35. PubMed ID: 1916319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying Areas of Vascular Leakage in Sickle Cell Retinopathy Using Standard and Widefield Fluorescein Angiography.
    Barbosa J; Malbin B; Le K; Lin X
    Ophthalmic Surg Lasers Imaging Retina; 2020 Mar; 51(3):153-158. PubMed ID: 32211905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes.
    Hawes NL; Smith RS; Chang B; Davisson M; Heckenlively JR; John SW
    Mol Vis; 1999 Sep; 5():22. PubMed ID: 10493779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 148 degrees fundus photography.
    Augsburger A; Alexander KL
    J Am Optom Assoc; 1981 Dec; 52(12):941-3. PubMed ID: 7328259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differentiation between presumed ocular histoplasmosis syndrome and multifocal choroiditis with panuveitis based on morphology of photographed fundus lesions and fluorescein angiography.
    Parnell JR; Jampol LM; Yannuzzi LA; Gass JD; Tittl MK
    Arch Ophthalmol; 2001 Feb; 119(2):208-12. PubMed ID: 11176981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-widefield fundus fluorescein angiography in pediatric retinal vascular diseases.
    Temkar S; Azad SV; Chawla R; Damodaran S; Garg G; Regani H; Nawazish S; Raj N; Venkatraman V
    Indian J Ophthalmol; 2019 Jun; 67(6):788-794. PubMed ID: 31124488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wide-field imaging of the retina.
    Witmer MT; Kiss S
    Surv Ophthalmol; 2013; 58(2):143-54. PubMed ID: 23369515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of Concentric Rings Method as a Topographic Measure of Retinal Nonperfusion in Ultra-Widefield Fluorescein Angiography.
    Nicholson L; Vazquez-Alfageme C; Ramu J; Triantafyllopoulou I; Patrao NV; Muwas M; Islam F; Hykin PG; Sivaprasad S
    Am J Ophthalmol; 2015 Dec; 160(6):1217-1225.e2. PubMed ID: 26384165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digital ocular fundus imaging: a review.
    Bernardes R; Serranho P; Lobo C
    Ophthalmologica; 2011; 226(4):161-81. PubMed ID: 21952522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Areas of nonperfusion in peripheral retina of eyes with pathologic myopia detected by ultra-widefield fluorescein angiography.
    Kaneko Y; Moriyama M; Hirahara S; Ogura Y; Ohno-Matsui K
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1432-9. PubMed ID: 24526439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UTILITY OF ULTRA-WIDEFIELD RETINAL IMAGING FOR THE STAGING AND MANAGEMENT OF SICKLE CELL RETINOPATHY.
    Han IC; Zhang AY; Liu TYA; Linz MO; Scott AW
    Retina; 2019 May; 39(5):836-843. PubMed ID: 29384996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of the image obtained with a wide-field scanning ophthalmoscope.
    Oishi A; Hidaka J; Yoshimura N
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2424-31. PubMed ID: 24667862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy.
    Pang CE; Shah VP; Sarraf D; Freund KB
    Am J Ophthalmol; 2014 Aug; 158(2):362-371.e2. PubMed ID: 24794091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.