These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
559 related articles for article (PubMed ID: 25037018)
1. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. Ke X; Ng VW; Ono RJ; Chan JM; Krishnamurthy S; Wang Y; Hedrick JL; Yang YY J Control Release; 2014 Nov; 193():9-26. PubMed ID: 25037018 [TBL] [Abstract][Full Text] [Related]
2. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Yang C; Attia AB; Tan JP; Ke X; Gao S; Hedrick JL; Yang YY Biomaterials; 2012 Apr; 33(10):2971-9. PubMed ID: 22244697 [TBL] [Abstract][Full Text] [Related]
3. The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Lee AL; Venkataraman S; Sirat SB; Gao S; Hedrick JL; Yang YY Biomaterials; 2012 Feb; 33(6):1921-8. PubMed ID: 22137125 [TBL] [Abstract][Full Text] [Related]
4. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Attia AB; Yang C; Tan JP; Gao S; Williams DF; Hedrick JL; Yang YY Biomaterials; 2013 Apr; 34(12):3132-40. PubMed ID: 23380357 [TBL] [Abstract][Full Text] [Related]
5. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
6. Polymeric micelles as drug carriers: their lights and shadows. Yokoyama M J Drug Target; 2014 Aug; 22(7):576-83. PubMed ID: 25012065 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization, drug-loading capacity and safety of novel pH-independent amphiphilic amino acid copolymer micelles. Tang J; Yao J; Shi J; Xiao Q; Zhou J; Chen F Pharmazie; 2012 Sep; 67(9):756-64. PubMed ID: 23016447 [TBL] [Abstract][Full Text] [Related]
8. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Gu L; Faig A; Abdelhamid D; Uhrich K Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of amphiphilic star-shaped copolymers based on β-cyclodextrin for micelles drug delivery. Lv J; Liang R; Xia Z; Li Y; Lv Z; Hou D; Yu L; Chen G; Liu Y; Yang F Drug Dev Ind Pharm; 2019 Jun; 45(6):1017-1028. PubMed ID: 30922119 [TBL] [Abstract][Full Text] [Related]
10. Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Zhang JX; Yan MQ; Li XH; Qiu LY; Li XD; Li XJ; Jin Y; Zhu KJ Pharm Res; 2007 Oct; 24(10):1944-53. PubMed ID: 17530389 [TBL] [Abstract][Full Text] [Related]
11. Core-cross-linked polymeric micelles as paclitaxel carriers. Shuai X; Merdan T; Schaper AK; Xi F; Kissel T Bioconjug Chem; 2004; 15(3):441-8. PubMed ID: 15149170 [TBL] [Abstract][Full Text] [Related]
12. Methotrexate-loaded biodegradable polymeric micelles: preparation, physicochemical properties and in vitro drug release. Zhang Y; Jin T; Zhuo RX Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):104-9. PubMed ID: 16039836 [TBL] [Abstract][Full Text] [Related]
13. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. Xiong XB; Falamarzian A; Garg SM; Lavasanifar A J Control Release; 2011 Oct; 155(2):248-61. PubMed ID: 21621570 [TBL] [Abstract][Full Text] [Related]
14. pH-Responsive polymeric micelles based on amphiphilic chitosan derivatives: Effect of hydrophobic cores on oral meloxicam delivery. Woraphatphadung T; Sajomsang W; Gonil P; Treetong A; Akkaramongkolporn P; Ngawhirunpat T; Opanasopit P Int J Pharm; 2016 Jan; 497(1-2):150-60. PubMed ID: 26657271 [TBL] [Abstract][Full Text] [Related]
15. Effect of architecture on the micellar properties of poly (ɛ-caprolactone) containing sulfobetaines. Cao J; Lu A; Li C; Cai M; Chen Y; Li S; Luo X Colloids Surf B Biointerfaces; 2013 Dec; 112():35-41. PubMed ID: 23948152 [TBL] [Abstract][Full Text] [Related]
16. Development and characterization of stabilized double loaded mPEG-PDLLA micelles for simultaneous delivery of paclitaxel and docetaxel. Ouahab A; Shao C; Shen Y; Tu J Drug Dev Ind Pharm; 2014 Jul; 40(7):860-8. PubMed ID: 23600653 [TBL] [Abstract][Full Text] [Related]
17. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. Soga O; van Nostrum CF; Fens M; Rijcken CJ; Schiffelers RM; Storm G; Hennink WE J Control Release; 2005 Mar; 103(2):341-53. PubMed ID: 15763618 [TBL] [Abstract][Full Text] [Related]
18. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds. Moroishi H; Yoshida C; Murakami Y Colloids Surf B Biointerfaces; 2013 Feb; 102():597-603. PubMed ID: 23107939 [TBL] [Abstract][Full Text] [Related]
19. Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: Preparation, in vitro and in vivo evaluation. Zhang JX; Li XJ; Qiu LY; Li XH; Yan MQ; Yi Jin ; Zhu KJ J Control Release; 2006 Dec; 116(3):322-9. PubMed ID: 17109985 [TBL] [Abstract][Full Text] [Related]
20. Single-Chain Polymeric Nanocarriers: A Platform for Determining Structure-Function Correlations in the Delivery of Molecular Cargo. Chan D; Yu AC; Appel EA Biomacromolecules; 2017 Apr; 18(4):1434-1439. PubMed ID: 28263572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]