BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25037408)

  • 1. Evolution of morphology of bacterial cellulose scaffolds during early culture.
    Luo H; Zhang J; Xiong G; Wan Y
    Carbohydr Polym; 2014 Oct; 111():722-8. PubMed ID: 25037408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering microporosity in bacterial cellulose scaffolds.
    Bäckdahl H; Esguerra M; Delbro D; Risberg B; Gatenholm P
    J Tissue Eng Regen Med; 2008 Aug; 2(6):320-30. PubMed ID: 18615821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2.
    Shi Q; Li Y; Sun J; Zhang H; Chen L; Chen B; Yang H; Wang Z
    Biomaterials; 2012 Oct; 33(28):6644-9. PubMed ID: 22727467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering.
    Ran J; Jiang P; Liu S; Sun G; Yan P; Shen X; Tong H
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():130-140. PubMed ID: 28575967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds.
    Fang B; Wan YZ; Tang TT; Gao C; Dai KR
    Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H
    J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose.
    Zang S; Zhuo Q; Chang X; Qiu G; Wu Z; Yang G
    Carbohydr Polym; 2014 Apr; 104():158-65. PubMed ID: 24607173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion.
    Bodin A; Bharadwaj S; Wu S; Gatenholm P; Atala A; Zhang Y
    Biomaterials; 2010 Dec; 31(34):8889-901. PubMed ID: 20800278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SEM and TEM for structure and properties characterization of bacterial cellulose/hydroxyapatite composites.
    Arkharova NA; Suvorova EI; Severin AV; Khripunov AK; Krasheninnikov SV; Klechkovskaya VV
    Scanning; 2016 Nov; 38(6):757-765. PubMed ID: 27171920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creation of macropores in three-dimensional bacterial cellulose scaffold for potential cancer cell culture.
    Xiong G; Luo H; Zhu Y; Raman S; Wan Y
    Carbohydr Polym; 2014 Dec; 114():553-557. PubMed ID: 25263926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering.
    Basu P; Saha N; Alexandrova R; Andonova-Lilova B; Georgieva M; Miloshev G; Saha P
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanofibrous cellulose scaffolds with controlled microarchitecture.
    Rodríguez K; Sundberg J; Gatenholm P; Renneckar S
    Carbohydr Polym; 2014 Jan; 100():143-9. PubMed ID: 24188848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold.
    Hou Y; Wang X; Yang J; Zhu R; Zhang Z; Li Y
    J Biomed Mater Res A; 2018 May; 106(5):1288-1298. PubMed ID: 29316233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.
    Atila D; Keskin D; Tezcaner A
    Carbohydr Polym; 2015 Nov; 133():251-61. PubMed ID: 26344279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.