BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25038066)

  • 1. In-depth characterization of the cerebrospinal fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR).
    Guldbrandsen A; Vethe H; Farag Y; Oveland E; Garberg H; Berle M; Myhr KM; Opsahl JA; Barsnes H; Berven FS
    Mol Cell Proteomics; 2014 Nov; 13(11):3152-63. PubMed ID: 25038066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Dive on the Proteome of Human Cerebrospinal Fluid: A Valuable Data Resource for Biomarker Discovery and Missing Protein Identification.
    Macron C; Lane L; Núñez Galindo A; Dayon L
    J Proteome Res; 2018 Dec; 17(12):4113-4126. PubMed ID: 30124047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-depth Site-specific Analysis of N-glycoproteome in Human Cerebrospinal Fluid and Glycosylation Landscape Changes in Alzheimer's Disease.
    Chen Z; Yu Q; Yu Q; Johnson J; Shipman R; Zhong X; Huang J; Asthana S; Carlsson C; Okonkwo O; Li L
    Mol Cell Proteomics; 2021; 20():100081. PubMed ID: 33862227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry.
    Liu T; Qian WJ; Gritsenko MA; Camp DG; Monroe ME; Moore RJ; Smith RD
    J Proteome Res; 2005; 4(6):2070-80. PubMed ID: 16335952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyco-DIA: a method for quantitative O-glycoproteomics with in silico-boosted glycopeptide libraries.
    Ye Z; Mao Y; Clausen H; Vakhrushev SY
    Nat Methods; 2019 Sep; 16(9):902-910. PubMed ID: 31384044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient enrichment method for human plasma glycoproteome analyses using tandem hydrophilic interaction liquid chromatography workflow.
    Jie J; Liu D; Yang B; Zou X
    J Chromatogr A; 2020 Jan; 1610():460546. PubMed ID: 31570191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online 2D-LC-MS/MS Platform for Analysis of Glycated Proteome.
    Zhang L; Liu CW; Zhang Q
    Anal Chem; 2018 Jan; 90(2):1081-1086. PubMed ID: 29281256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative characterization of glycoproteins in neurodegenerative disorders using iTRAQ.
    Shi M; Hwang H; Zhang J
    Methods Mol Biol; 2013; 951():279-96. PubMed ID: 23296538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-Specific N- and O-Glycopeptide Analysis Using an Integrated C18-PGC-LC-ESI-QTOF-MS/MS Approach.
    Stavenhagen K; Hinneburg H; Kolarich D; Wuhrer M
    Methods Mol Biol; 2017; 1503():109-119. PubMed ID: 27743362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications.
    Zhu R; Song E; Hussein A; Kobeissy FH; Mechref Y
    Methods Mol Biol; 2017; 1598():213-227. PubMed ID: 28508363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved in-gel digestion method for efficient identification of protein and glycosylation analysis of glycoproteins using guanidine hydrochloride.
    Takakura D; Hashii N; Kawasaki N
    Proteomics; 2014 Feb; 14(2-3):196-201. PubMed ID: 24272977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sialic acid capture-and-release and LC-MS(n) analysis of glycopeptides.
    Nilsson J; Larson G
    Methods Mol Biol; 2013; 951():79-100. PubMed ID: 23296526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD.
    Halim A; Nilsson J; Rüetschi U; Hesse C; Larson G
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.013649. PubMed ID: 22171320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Depth Site-Specific O-Glycosylation Analysis of Glycoproteins and Endogenous Peptides in Cerebrospinal Fluid (CSF) from Healthy Individuals, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD) Patients.
    Chen Z; Wang D; Yu Q; Johnson J; Shipman R; Zhong X; Huang J; Yu Q; Zetterberg H; Asthana S; Carlsson C; Okonkwo O; Li L
    ACS Chem Biol; 2022 Nov; 17(11):3059-3068. PubMed ID: 34964596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced analysis of the mouse plasma proteome using cysteine-containing tryptic glycopeptides.
    Bernhard OK; Kapp EA; Simpson RJ
    J Proteome Res; 2007 Mar; 6(3):987-95. PubMed ID: 17330941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Glycoproteomic Analysis of Chinese Hamster Ovary Cells.
    Yang G; Hu Y; Sun S; Ouyang C; Yang W; Wang Q; Betenbaugh M; Zhang H
    Anal Chem; 2018 Dec; 90(24):14294-14302. PubMed ID: 30457839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LC-MS/MS characterization of O-glycosylation sites and glycan structures of human cerebrospinal fluid glycoproteins.
    Halim A; Rüetschi U; Larson G; Nilsson J
    J Proteome Res; 2013 Feb; 12(2):573-84. PubMed ID: 23234360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasmall gold nanoparticles for highly specific isolation/enrichment of N-linked glycosylated peptides.
    Tran TH; Park S; Lee H; Park S; Kim B; Kim OH; Oh BC; Lee D; Lee H
    Analyst; 2012 Feb; 137(4):991-8. PubMed ID: 22191088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC.
    Totten SM; Feasley CL; Bermudez A; Pitteri SJ
    J Proteome Res; 2017 Mar; 16(3):1249-1260. PubMed ID: 28199111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites.
    Alvarez-Manilla G; Atwood J; Guo Y; Warren NL; Orlando R; Pierce M
    J Proteome Res; 2006 Mar; 5(3):701-8. PubMed ID: 16512686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.