These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 25038590)
1. Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. Cao F; Chen F; Sun H; Zhang G; Chen ZH; Wu F BMC Genomics; 2014 Jul; 15(1):611. PubMed ID: 25038590 [TBL] [Abstract][Full Text] [Related]
2. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains. Sun H; Chen ZH; Chen F; Xie L; Zhang G; Vincze E; Wu F BMC Plant Biol; 2015 Oct; 15():259. PubMed ID: 26503017 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Tiryakioglu M; Eker S; Ozkutlu F; Husted S; Cakmak I J Trace Elem Med Biol; 2006; 20(3):181-9. PubMed ID: 16959595 [TBL] [Abstract][Full Text] [Related]
4. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Guo P; Baum M; Grando S; Ceccarelli S; Bai G; Li R; von Korff M; Varshney RK; Graner A; Valkoun J J Exp Bot; 2009; 60(12):3531-44. PubMed ID: 19561048 [TBL] [Abstract][Full Text] [Related]
5. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
6. An miR156-regulated nucleobase-ascorbate transporter 2 confers cadmium tolerance via enhanced anti-oxidative capacity in barley. Wang NH; Zhou XY; Shi SH; Zhang S; Chen ZH; Ali MA; Ahmed IM; Wang Y; Wu F J Adv Res; 2023 Feb; 44():23-37. PubMed ID: 36725193 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. Su T; Fu L; Kuang L; Chen D; Zhang G; Shen Q; Wu D J Hazard Mater; 2022 Feb; 423(Pt A):127140. PubMed ID: 34523471 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Analysis to Shed Light on the Molecular Mechanisms of Early Responses to Cadmium in Roots and Leaves of King Grass ( Zhao J; Xia B; Meng Y; Yang Z; Pan L; Zhou M; Zhang X Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31126029 [TBL] [Abstract][Full Text] [Related]
9. Responses of two kidney bean (Phaseolus vulgaris) cultivars to the combined stress of sulfur deficiency and cadmium toxicity. Li D; Chen G; Lu Q; Li Y; Wang J; Li H Biometals; 2018 Feb; 31(1):17-28. PubMed ID: 29188540 [TBL] [Abstract][Full Text] [Related]
10. Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Wang F; Chen F; Cai Y; Zhang G; Wu F Biol Trace Elem Res; 2011 Dec; 144(1-3):1275-88. PubMed ID: 21681462 [TBL] [Abstract][Full Text] [Related]
11. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. Rezaei MK; Shobbar ZS; Shahbazi M; Abedini R; Zare S J Plant Physiol; 2013 Sep; 170(14):1277-84. PubMed ID: 23664583 [TBL] [Abstract][Full Text] [Related]
12. Comparative Transcriptome Analysis of the Molecular Mechanism of the Hairy Roots of Sun Y; Lu Q; Cao Y; Wang M; Cheng X; Yan Q Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31888010 [No Abstract] [Full Text] [Related]
13. Comparison of early transcriptome responses to copper and cadmium in rice roots. Lin CY; Trinh NN; Fu SF; Hsiung YC; Chia LC; Lin CW; Huang HJ Plant Mol Biol; 2013 Mar; 81(4-5):507-22. PubMed ID: 23400832 [TBL] [Abstract][Full Text] [Related]
14. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Chen F; Wang F; Wu F; Mao W; Zhang G; Zhou M Plant Physiol Biochem; 2010 Aug; 48(8):663-72. PubMed ID: 20605723 [TBL] [Abstract][Full Text] [Related]
15. miRNA transcriptome reveals key miRNAs and their targets contributing to the difference in Cd tolerance of two contrasting maize genotypes. Teng L; Zhang X; Wang R; Lin K; Zeng M; Chen H; Cao F Ecotoxicol Environ Saf; 2023 May; 256():114881. PubMed ID: 37030049 [TBL] [Abstract][Full Text] [Related]
16. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. Vojta P; Kokáš F; Husičková A; Grúz J; Bergougnoux V; Marchetti CF; Jiskrová E; Ježilová E; Mik V; Ikeda Y; Galuszka P N Biotechnol; 2016 Sep; 33(5 Pt B):676-691. PubMed ID: 26877151 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptomics analysis reveals differential Cd response processes in roots of two turnip landraces with different Cd accumulation capacities. Li X; Chen D; Yang Y; Liu Y; Luo L; Chen Q; Yang Y Ecotoxicol Environ Saf; 2021 Sep; 220():112392. PubMed ID: 34102395 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic analysis of Verbena bonariensis roots in response to cadmium stress. Wang MQ; Bai ZY; Xiao YF; Li Y; Liu QL; Zhang L; Pan YZ; Jiang BB; Zhang F BMC Genomics; 2019 Nov; 20(1):877. PubMed ID: 31747870 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance. Liu PH; Huang ZX; Luo XH; Chen H; Weng BQ; Wang YX; Chen LS PLoS One; 2020; 15(9):e0239617. PubMed ID: 32991614 [TBL] [Abstract][Full Text] [Related]
20. OsACA6, a P-type 2B Ca(2+) ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. Shukla D; Huda KM; Banu MS; Gill SS; Tuteja R; Tuteja N Planta; 2014 Oct; 240(4):809-24. PubMed ID: 25074587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]