These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 25038590)
21. Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. Witzel K; Matros A; Strickert M; Kaspar S; Peukert M; Mühling KH; Börner A; Mock HP Mol Plant; 2014 Feb; 7(2):336-55. PubMed ID: 24004485 [TBL] [Abstract][Full Text] [Related]
22. Global Transcriptome Analysis Reveals Distinct Aluminum-Tolerance Pathways in the Al-Accumulating Species Hydrangea macrophylla and Marker Identification. Chen H; Lu C; Jiang H; Peng J PLoS One; 2015; 10(12):e0144927. PubMed ID: 26660093 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. Wang F; Zhou Z; Liu X; Zhu L; Guo B; Lv C; Zhu J; Chen ZH; Xu R BMC Plant Biol; 2024 May; 24(1):385. PubMed ID: 38724918 [TBL] [Abstract][Full Text] [Related]
24. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945 [TBL] [Abstract][Full Text] [Related]
25. Wang XK; Gong X; Cao F; Wang Y; Zhang G; Wu F Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30965578 [TBL] [Abstract][Full Text] [Related]
26. Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. Ibrahim W; Ahmed IM; Chen X; Cao F; Zhu S; Wu F Biometals; 2015 Dec; 28(6):1063-78. PubMed ID: 26525977 [TBL] [Abstract][Full Text] [Related]
27. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Zhang M; Liu X; Yuan L; Wu K; Duan J; Wang X; Yang L Plant Physiol Biochem; 2012 Jan; 50(1):79-86. PubMed ID: 21855360 [TBL] [Abstract][Full Text] [Related]
28. Transporters and ascorbate-glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes. Han X; Zhang Y; Yu M; Zhang J; Xu D; Lu Z; Qiao G; Qiu W; Zhuo R Tree Physiol; 2020 Jul; 40(8):1126-1142. PubMed ID: 32175583 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome Analysis Reveals Cotton ( Han M; Lu X; Yu J; Chen X; Wang X; Malik WA; Wang J; Wang D; Wang S; Guo L; Chen C; Cui R; Yang X; Ye W Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30909634 [TBL] [Abstract][Full Text] [Related]
30. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley. Qiu CW; Ma Y; Liu W; Zhang S; Wang Y; Cai S; Zhang G; Chater CCC; Chen ZH; Wu F J Adv Res; 2023 Jul; 49():31-45. PubMed ID: 36170948 [TBL] [Abstract][Full Text] [Related]
31. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183 [TBL] [Abstract][Full Text] [Related]
32. Transcriptome analysis reveals insight into molecular hydrogen-induced cadmium tolerance in alfalfa: the prominent role of sulfur and (homo)glutathione metabolism. Cui W; Yao P; Pan J; Dai C; Cao H; Chen Z; Zhang S; Xu S; Shen W BMC Plant Biol; 2020 Feb; 20(1):58. PubMed ID: 32019510 [TBL] [Abstract][Full Text] [Related]
33. Spatial transcriptomes of iron-deficient and cadmium-stressed rice. Ogo Y; Kakei Y; Itai RN; Kobayashi T; Nakanishi H; Takahashi H; Nakazono M; Nishizawa NK New Phytol; 2014 Feb; 201(3):781-794. PubMed ID: 24188410 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress. Zhu H; Ai H; Cao L; Sui R; Ye H; Du D; Sun J; Yao J; Chen K; Chen L Ecotoxicol Environ Saf; 2018 Sep; 160():349-356. PubMed ID: 29860131 [TBL] [Abstract][Full Text] [Related]
35. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. Santoro DF; Sicilia A; Testa G; Cosentino SL; Lo Piero AR BMC Genomics; 2022 Jun; 23(1):427. PubMed ID: 35672691 [TBL] [Abstract][Full Text] [Related]
36. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress. Quan X; Qian Q; Ye Z; Zeng J; Han Z; Zhang G J Plant Physiol; 2016 Nov; 206():59-67. PubMed ID: 27693987 [TBL] [Abstract][Full Text] [Related]
37. Identification of the differentially accumulated proteins associated with low phosphorus tolerance in a Tibetan wild barley accession. Nadira UA; Ahmed IM; Zeng J; Wu F; Zhang G J Plant Physiol; 2016 Jul; 198():10-22. PubMed ID: 27111503 [TBL] [Abstract][Full Text] [Related]
38. Genome-wide transcriptional response of the archaeon Thermococcus gammatolerans to cadmium. Lagorce A; Fourçans A; Dutertre M; Bouyssiere B; Zivanovic Y; Confalonieri F PLoS One; 2012; 7(7):e41935. PubMed ID: 22848664 [TBL] [Abstract][Full Text] [Related]
39. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. Witzel K; Weidner A; Surabhi GK; Börner A; Mock HP J Exp Bot; 2009; 60(12):3545-57. PubMed ID: 19671579 [TBL] [Abstract][Full Text] [Related]
40. Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Gaudet M; Pietrini F; Beritognolo I; Iori V; Zacchini M; Massacci A; Mugnozza GS; Sabatti M Tree Physiol; 2011 Dec; 31(12):1309-18. PubMed ID: 21949013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]