BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25038731)

  • 1. Separation of rare gases and chiral molecules by selective binding in porous organic cages.
    Chen L; Reiss PS; Chong SY; Holden D; Jelfs KE; Hasell T; Little MA; Kewley A; Briggs ME; Stephenson A; Thomas KM; Armstrong JA; Bell J; Busto J; Noel R; Liu J; Strachan DM; Thallapally PK; Cooper AI
    Nat Mater; 2014 Oct; 13(10):954-60. PubMed ID: 25038731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances of application of porous molecular cages for enantioselective recognition and separation.
    Zhang JH; Xie SM; Zi M; Yuan LM
    J Sep Sci; 2020 Jan; 43(1):134-149. PubMed ID: 31587485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A homochiral porous organic cage with large cavity and pore windows for the efficient gas chromatography separation of enantiomers and positional isomers.
    Zhang JH; Xie SM; Wang BJ; He PG; Yuan LM
    J Sep Sci; 2018 Mar; 41(6):1385-1394. PubMed ID: 29222874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective separation of enantiomers using a chiral porous organic cage.
    Zhang JH; Xie SM; Wang BJ; He PG; Yuan LM
    J Chromatogr A; 2015 Dec; 1426():174-82. PubMed ID: 26632517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding gas capacity, guest selectivity, and diffusion in porous liquids.
    Greenaway RL; Holden D; Eden EGB; Stephenson A; Yong CW; Bennison MJ; Hasell T; Briggs ME; James SL; Cooper AI
    Chem Sci; 2017 Apr; 8(4):2640-2651. PubMed ID: 28553499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution.
    Wang F; He K; Wang R; Ma H; Marriott PJ; Hill MR; Simon GP; Holl MMB; Wang H
    Adv Mater; 2024 May; ():e2400709. PubMed ID: 38721928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular shape sorting using molecular organic cages.
    Mitra T; Jelfs KE; Schmidtmann M; Ahmed A; Chong SY; Adams DJ; Cooper AI
    Nat Chem; 2013 Apr; 5(4):276-81. PubMed ID: 23511415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chiral porous organic cage for molecular recognition using gas chromatography.
    Xie SM; Zhang JH; Fu N; Wang BJ; Chen L; Yuan LM
    Anal Chim Acta; 2016 Jan; 903():156-63. PubMed ID: 26709309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inside information on xenon adsorption in porous organic cages by NMR.
    Komulainen S; Roukala J; Zhivonitko VV; Javed MA; Chen L; Holden D; Hasell T; Cooper A; Lantto P; Telkki VV
    Chem Sci; 2017 Aug; 8(8):5721-5727. PubMed ID: 28989612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-organic cages for molecular separations.
    Zhang D; Ronson TK; Zou YQ; Nitschke JR
    Nat Rev Chem; 2021 Mar; 5(3):168-182. PubMed ID: 37117530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-synthetic modification of porous organic cages.
    Wang H; Jin Y; Sun N; Zhang W; Jiang J
    Chem Soc Rev; 2021 Aug; 50(16):8874-8886. PubMed ID: 34180920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of Light Gases from Xenon over Porous Organic Cage Membranes.
    Lucero JM; Carreon MA
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32182-32188. PubMed ID: 32568506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function.
    Mastalerz M
    Acc Chem Res; 2018 Oct; 51(10):2411-2422. PubMed ID: 30203648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-organic framework with optimally selective xenon adsorption and separation.
    Banerjee D; Simon CM; Plonka AM; Motkuri RK; Liu J; Chen X; Smit B; Parise JB; Haranczyk M; Thallapally PK
    Nat Commun; 2016 Jun; 7():ncomms11831. PubMed ID: 27291101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.
    Xie S; Zhang J; Fu N; Wang B; Hu C; Yuan L
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27834837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore Size Control
    Jia Z; Yan Z; Zhang J; Zou Y; Qi Y; Li X; Li Y; Guo X; Yang C; Ma L
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1127-1134. PubMed ID: 33371663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation.
    Peng Y; Gong T; Zhang K; Lin X; Liu Y; Jiang J; Cui Y
    Nat Commun; 2014 Jul; 5():4406. PubMed ID: 25030529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noria: A Highly Xe-Selective Nanoporous Organic Solid.
    Patil RS; Banerjee D; Simon CM; Atwood JL; Thallapally PK
    Chemistry; 2016 Aug; 22(36):12618-23. PubMed ID: 27377260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.