BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 25038777)

  • 1. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus.
    Xu K; Ren C; Liu Z; Zhang T; Zhang T; Li D; Wang L; Yan Q; Guo L; Shen J; Zhang Z
    Cell Mol Life Sci; 2015 Jan; 72(2):383-99. PubMed ID: 25038777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.
    Karvelis T; Gasiunas G; Miksys A; Barrangou R; Horvath P; Siksnys V
    RNA Biol; 2013 May; 10(5):841-51. PubMed ID: 23535272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis.
    Hou Z; Zhang Y; Propson NE; Howden SE; Chu LF; Sontheimer EJ; Thomson JA
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15644-9. PubMed ID: 23940360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing endogenous type II CRISPR-Cas9 system for genome editing in Streptococcus thermophilus.
    Ma S; Wang F; Xuejing Z; Liping Q; Xueping G; Lu X; Qi Q
    Biotechnol Bioeng; 2024 Feb; 121(2):749-756. PubMed ID: 37994543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity.
    Chari R; Yeo NC; Chavez A; Church GM
    ACS Synth Biol; 2017 May; 6(5):902-904. PubMed ID: 28146356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome.
    Müller M; Lee CM; Gasiunas G; Davis TH; Cradick TJ; Siksnys V; Bao G; Cathomen T; Mussolino C
    Mol Ther; 2016 Mar; 24(3):636-44. PubMed ID: 26658966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
    Ui-Tei K; Maruyama S; Nakano Y
    Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted gene editing by transfection of in vitro reconstituted Streptococcus thermophilus Cas9 nuclease complex.
    Glemzaite M; Balciunaite E; Karvelis T; Gasiunas G; Grusyte MM; Alzbutas G; Jurcyte A; Anderson EM; Maksimova E; Smith AJ; Lubys A; Zaliauskiene L; Siksnys V
    RNA Biol; 2015; 12(1):1-4. PubMed ID: 25826410
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.
    Rahdar M; McMahon MA; Prakash TP; Swayze EE; Bennett CF; Cleveland DW
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):E7110-7. PubMed ID: 26589814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing.
    Marina RJ; Brannan KW; Dong KD; Yee BA; Yeo GW
    Cell Rep; 2020 Nov; 33(5):108350. PubMed ID: 33147453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guide RNA functional modules direct Cas9 activity and orthogonality.
    Briner AE; Donohoue PD; Gomaa AA; Selle K; Slorach EM; Nye CH; Haurwitz RE; Beisel CL; May AP; Barrangou R
    Mol Cell; 2014 Oct; 56(2):333-339. PubMed ID: 25373540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli.
    Sapranauskas R; Gasiunas G; Fremaux C; Barrangou R; Horvath P; Siksnys V
    Nucleic Acids Res; 2011 Nov; 39(21):9275-82. PubMed ID: 21813460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of the Cas9 Orthologs from Streptococcus thermophilus and Staphylococcus aureus for Non-Homologous End-Joining Mediated Site-Specific Mutagenesis in Arabidopsis thaliana.
    Steinert J; Schmidt C; Puchta H
    Methods Mol Biol; 2017; 1669():365-376. PubMed ID: 28936671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum.
    Wagner JC; Platt RJ; Goldfless SJ; Zhang F; Niles JC
    Nat Methods; 2014 Sep; 11(9):915-8. PubMed ID: 25108687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors.
    Wang X; Wang Y; Wu X; Wang J; Wang Y; Qiu Z; Chang T; Huang H; Lin RJ; Yee JK
    Nat Biotechnol; 2015 Feb; 33(2):175-8. PubMed ID: 25599175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.
    Steinert J; Schiml S; Fauser F; Puchta H
    Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity.
    Anderson EM; Haupt A; Schiel JA; Chou E; Machado HB; Strezoska Ž; Lenger S; McClelland S; Birmingham A; Vermeulen A; Smith Av
    J Biotechnol; 2015 Oct; 211():56-65. PubMed ID: 26189696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.