These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 25038780)
1. Explosives detection in a lasing plasmon nanocavity. Ma RM; Ota S; Li Y; Yang S; Zhang X Nat Nanotechnol; 2014 Aug; 9(8):600-4. PubMed ID: 25038780 [TBL] [Abstract][Full Text] [Related]
2. Detection and discrimination of low concentration explosives using MOS nanoparticle sensors. Gui Y; Xie C; Xu J; Wang G J Hazard Mater; 2009 May; 164(2-3):1030-5. PubMed ID: 18930348 [TBL] [Abstract][Full Text] [Related]
3. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry. Sun W; Liang M; Li Z; Shu J; Yang B; Xu C; Zou Y Talanta; 2016 Aug; 156-157():191-195. PubMed ID: 27260452 [TBL] [Abstract][Full Text] [Related]
5. Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface. Nagatomo K; Kawaguchi T; Miura N; Toko K; Matsumoto K Talanta; 2009 Sep; 79(4):1142-8. PubMed ID: 19615523 [TBL] [Abstract][Full Text] [Related]
6. Reliable, rapid and simple voltammetric detection of urea nitrate explosive. Cagan A; Lu D; Cizek K; La Belle J; Wang J Analyst; 2008 May; 133(5):585-7. PubMed ID: 18427677 [TBL] [Abstract][Full Text] [Related]
7. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives. Ma Y; Wang L Talanta; 2014 Mar; 120():100-5. PubMed ID: 24468348 [TBL] [Abstract][Full Text] [Related]
9. Towards an electronic dog nose: surface plasmon resonance immunosensor for security and safety. Onodera T; Toko K Sensors (Basel); 2014 Sep; 14(9):16586-616. PubMed ID: 25198004 [TBL] [Abstract][Full Text] [Related]
10. Use of porous graphitic carbon for the analysis of nitrate ester, nitramine and nitroaromatic explosives and by-products by liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry. Tachon R; Pichon V; Le Borgne MB; Minet JJ J Chromatogr A; 2007 Jun; 1154(1-2):174-81. PubMed ID: 17451723 [TBL] [Abstract][Full Text] [Related]
11. Rapid in situ detection of ultratrace 2,4-dinitrotoluene solids by a sandwiched paper-like electrochemical sensor. Wang J; Jin W; Zhang X; Hu C; Luo Q; Lin Y; Hu S Anal Chem; 2014 Aug; 86(16):8383-90. PubMed ID: 25072393 [TBL] [Abstract][Full Text] [Related]
12. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Zeng S; Baillargeat D; Ho HP; Yong KT Chem Soc Rev; 2014 May; 43(10):3426-52. PubMed ID: 24549396 [TBL] [Abstract][Full Text] [Related]
14. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors. Ooi KJ; Bai P; Gu MX; Ang LK Nanotechnology; 2012 Jul; 23(27):275201. PubMed ID: 22706495 [TBL] [Abstract][Full Text] [Related]
15. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor. Manera MG; Ferreiro-Vila E; Garcia-Martin JM; Garcia-Martin A; Rella R Biosens Bioelectron; 2014 Aug; 58():114-20. PubMed ID: 24632137 [TBL] [Abstract][Full Text] [Related]
16. Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. Yang A; Li Z; Knudson MP; Hryn AJ; Wang W; Aydin K; Odom TW ACS Nano; 2015 Dec; 9(12):11582-8. PubMed ID: 26456299 [TBL] [Abstract][Full Text] [Related]
17. Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Islam MS; Sultana J; Ahmmed Aoni R; Habib MS; Dinovitser A; Ng BW; Abbott D Opt Lett; 2019 Mar; 44(5):1134-1137. PubMed ID: 30821731 [TBL] [Abstract][Full Text] [Related]
18. New type high-index dielectric nanosensors based on the scattering intensity shift. Yan J; Liu P; Lin Z; Yang G Nanoscale; 2016 Mar; 8(11):5996-6007. PubMed ID: 26926420 [TBL] [Abstract][Full Text] [Related]