BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 25038786)

  • 1. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis.
    Nguyen GK; Wang S; Qiu Y; Hemu X; Lian Y; Tam JP
    Nat Chem Biol; 2014 Sep; 10(9):732-8. PubMed ID: 25038786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The macrocyclizing protease butelase 1 remains autocatalytic and reveals the structural basis for ligase activity.
    James AM; Haywood J; Leroux J; Ignasiak K; Elliott AG; Schmidberger JW; Fisher MF; Nonis SG; Fenske R; Bond CS; Mylne JS
    Plant J; 2019 Jun; 98(6):988-999. PubMed ID: 30790358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Butelase 1: A Versatile Ligase for Peptide and Protein Macrocyclization.
    Nguyen GK; Kam A; Loo S; Jansson AE; Pan LX; Tam JP
    J Am Chem Soc; 2015 Dec; 137(49):15398-401. PubMed ID: 26633100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Butelase-mediated cyclization and ligation of peptides and proteins.
    Nguyen GK; Qiu Y; Cao Y; Hemu X; Liu CF; Tam JP
    Nat Protoc; 2016 Oct; 11(10):1977-1988. PubMed ID: 27658013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butelase 1-Mediated Ligation of Peptides and Proteins.
    Hemu X; Zhang X; Bi X; Liu CF; Tam JP
    Methods Mol Biol; 2019; 2012():83-109. PubMed ID: 31161505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Properties of Recombinant Ligase Butelase-1 and Its Application in Cyclizing Food-Derived Angiotensin I-Converting Enzyme Inhibitory Peptides.
    Zhao J; Fan R; Jia F; Huang Y; Huang Z; Hou Y; Hu SQ
    J Agric Food Chem; 2021 Jun; 69(21):5976-5985. PubMed ID: 34003638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Specific N-Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide.
    Nguyen GK; Cao Y; Wang W; Liu CF; Tam JP
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15694-8. PubMed ID: 26563575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on activation mechanism and cleavage sites of recombinant butelase-1 zymogen derived from Clitoria ternatea.
    Zhao J; Ge G; Huang Y; Hou Y; Hu SQ
    Biochimie; 2022 Aug; 199():12-22. PubMed ID: 35398151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant Butelase-Mediated Cyclization of the p53-Binding Domain of the Oncoprotein MdmX-Stabilized Protein Conformation as a Promising Model for Structural Investigation.
    Pi N; Gao M; Cheng X; Liu H; Kuang Z; Yang Z; Yang J; Zhang B; Chen Y; Liu S; Huang Y; Su Z
    Biochemistry; 2019 Jul; 58(27):3005-3015. PubMed ID: 31187974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and application of natural and recombinant butelase-1 to improve industrial enzymes by end-to-end circularization.
    Hemu X; Zhang X; Nguyen GKT; To J; Serra A; Loo S; Sze SK; Liu CF; Tam JP
    RSC Adv; 2021 Jun; 11(37):23105-23112. PubMed ID: 35480425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for proenzyme maturation, substrate recognition, and ligation by a hyperactive peptide asparaginyl ligase.
    Hu S; El Sahili A; Kishore S; Wong YH; Hemu X; Goh BC; Zhipei S; Wang Z; Tam JP; Liu CF; Lescar J
    Plant Cell; 2022 Nov; 34(12):4936-4949. PubMed ID: 36099055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Butelase-Mediated Macrocyclization of d-Amino-Acid-Containing Peptides.
    Nguyen GK; Hemu X; Quek JP; Tam JP
    Angew Chem Int Ed Engl; 2016 Oct; 55(41):12802-6. PubMed ID: 27624217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic Engineering of Live Bacterial Cell Surfaces Using Butelase 1.
    Bi X; Yin J; Nguyen GKT; Rao C; Halim NBA; Hemu X; Tam JP; Liu CF
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7822-7825. PubMed ID: 28524544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total Synthesis of Circular Bacteriocins by Butelase 1.
    Hemu X; Qiu Y; Nguyen GK; Tam JP
    J Am Chem Soc; 2016 Jun; 138(22):6968-71. PubMed ID: 27206099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PAL-Mediated Ligation for Protein and Cell-Surface Modification.
    Wang Z; Zhang D; Hu S; Bi X; Lescar J; Tam JP; Liu CF
    Methods Mol Biol; 2022; 2530():177-193. PubMed ID: 35761050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-binding glycine residues are major determinants for hydrolase and ligase activity of plant legumains.
    Hemu X; Chan NY; Liew HT; Hu S; Zhang X; Serra A; Lescar J; Liu CF; Tam JP
    New Phytol; 2023 May; 238(4):1534-1545. PubMed ID: 36843268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants for peptide-bond formation by asparaginyl ligases.
    Hemu X; El Sahili A; Hu S; Wong K; Chen Y; Wong YH; Zhang X; Serra A; Goh BC; Darwis DA; Chen MW; Sze SK; Liu CF; Lescar J; Tam JP
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11737-11746. PubMed ID: 31123145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides.
    Serra A; Hemu X; Nguyen GK; Nguyen NT; Sze SK; Tam JP
    Sci Rep; 2016 Mar; 6():23005. PubMed ID: 26965458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Butelase-Mediated Ligation as an Efficient Bioconjugation Method for the Synthesis of Peptide Dendrimers.
    Cao Y; Nguyen GK; Chuah S; Tam JP; Liu CF
    Bioconjug Chem; 2016 Nov; 27(11):2592-2596. PubMed ID: 27723303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consensus design and engineering of an efficient and high-yield peptide asparaginyl ligase for protein cyclization and ligation.
    Hemu X; Zhang X; Chang HY; Poh JE; Tam JP
    J Biol Chem; 2023 Mar; 299(3):102997. PubMed ID: 36764523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.