These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 25038790)

  • 1. How proteins bind macrocycles.
    Villar EA; Beglov D; Chennamadhavuni S; Porco JA; Kozakov D; Vajda S; Whitty A
    Nat Chem Biol; 2014 Sep; 10(9):723-31. PubMed ID: 25038790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress towards the broad use of non-peptide synthetic macrocycles in drug discovery.
    Whitty A; Viarengo LA; Zhong M
    Org Biomol Chem; 2017 Sep; 15(37):7729-7735. PubMed ID: 28876025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics.
    Fauman EB; Rai BK; Huang ES
    Curr Opin Chem Biol; 2011 Aug; 15(4):463-8. PubMed ID: 21704549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using chiral molecules as an approach to address low-druggability recognition sites.
    Lucas X; Günther S
    J Comput Chem; 2014 Nov; 35(29):2114-21. PubMed ID: 25223950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding site detection and druggability index from first principles.
    Seco J; Luque FJ; Barril X
    J Med Chem; 2009 Apr; 52(8):2363-71. PubMed ID: 19296650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrocycles in new drug discovery.
    Mallinson J; Collins I
    Future Med Chem; 2012 Jul; 4(11):1409-38. PubMed ID: 22857532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Syntheses Beyond the Rule of 5.
    Tyagi M; Begnini F; Poongavanam V; Doak BC; Kihlberg J
    Chemistry; 2020 Jan; 26(1):49-88. PubMed ID: 31483909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates.
    Doak BC; Over B; Giordanetto F; Kihlberg J
    Chem Biol; 2014 Sep; 21(9):1115-42. PubMed ID: 25237858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of protein-protein interactions in drug discovery.
    Andrei SA; Sijbesma E; Hann M; Davis J; O'Mahony G; Perry MWD; Karawajczyk A; Eickhoff J; Brunsveld L; Doveston RG; Milroy LG; Ottmann C
    Expert Opin Drug Discov; 2017 Sep; 12(9):925-940. PubMed ID: 28695752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.
    Pérot S; Sperandio O; Miteva MA; Camproux AC; Villoutreix BO
    Drug Discov Today; 2010 Aug; 15(15-16):656-67. PubMed ID: 20685398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building upon Nature's Framework: Overview of Key Strategies Toward Increasing Drug-Like Properties of Natural Product Cyclopeptides and Macrocycles.
    Blanco MJ
    Methods Mol Biol; 2019; 2001():203-233. PubMed ID: 31134573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Step Synthesis of Complex Artificial Macrocyclic Compounds.
    Madhavachary R; Abdelraheem EMM; Rossetti A; Twarda-Clapa A; Musielak B; Kurpiewska K; Kalinowska-Tłuścik J; Holak TA; Dömling A
    Angew Chem Int Ed Engl; 2017 Aug; 56(36):10725-10729. PubMed ID: 28691783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Based Design of Non-natural Macrocyclic Peptides That Inhibit Protein-Protein Interactions.
    Krüger DM; Glas A; Bier D; Pospiech N; Wallraven K; Dietrich L; Ottmann C; Koch O; Hennig S; Grossmann TN
    J Med Chem; 2017 Nov; 60(21):8982-8988. PubMed ID: 29028171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Design of Macrocycles for Therapeutic Applications: From Small Molecules to Peptides and Proteins.
    Sindhikara D; Wagner M; Gkeka P; Güssregen S; Tiwari G; Hessler G; Yapici E; Li Z; Evers A
    J Med Chem; 2020 Oct; 63(20):12100-12115. PubMed ID: 33017535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drugs targeting protein-protein interactions.
    Chène P
    ChemMedChem; 2006 Apr; 1(4):400-11. PubMed ID: 16892375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2019 Dec; 33(12):1057-1069. PubMed ID: 31598897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrocycles: MCR synthesis and applications in drug discovery.
    Abdelraheem EMM; Shaabani S; Dömling A
    Drug Discov Today Technol; 2018 Nov; 29():11-17. PubMed ID: 30471668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands.
    Cummings MD; Sekharan S
    J Med Chem; 2019 Aug; 62(15):6843-6853. PubMed ID: 30860377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horses for courses: reaching outside drug-like chemical space for inhibitors of challenging drug targets.
    Whitty A; Zhou L
    Future Med Chem; 2015; 7(9):1093-5. PubMed ID: 26132520
    [No Abstract]   [Full Text] [Related]  

  • 20. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties?
    Giordanetto F; Kihlberg J
    J Med Chem; 2014 Jan; 57(2):278-95. PubMed ID: 24044773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.