BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25039122)

  • 1. [Remote intelligent Brunnstrom assessment system for upper limb rehabilitation for post-stroke based on extreme learning machine].
    Wang Y; Yu L; Fu J; Fang Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Apr; 31(2):251-6. PubMed ID: 25039122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Rehabilitation Training Effect of Upper Limb Movement Disorder Based on MPL-CNN.
    Shi L; Wang R; Zhao J; Zhang J; Kuang Z
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training.
    Curado MR; Cossio EG; Broetz D; Agostini M; Cho W; Brasil FL; Yilmaz O; Liberati G; Lepski G; Birbaumer N; Ramos-Murguialday A
    PLoS One; 2015; 10(10):e0140161. PubMed ID: 26495971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardizing the approach to evidence-based upper limb rehabilitation after stroke.
    McDonnell MN; Hillier SL; Esterman AJ
    Top Stroke Rehabil; 2013; 20(5):432-40. PubMed ID: 24091285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients.
    Lee MM; Cho HY; Song CH
    Am J Phys Med Rehabil; 2012 Aug; 91(8):689-96, quiz 697-700. PubMed ID: 22469877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks.
    Yu L; Xiong D; Guo L; Wang J
    Comput Methods Programs Biomed; 2016 May; 128():100-10. PubMed ID: 27040835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective Assessment of Upper-Limb Mobility for Poststroke Rehabilitation.
    Zhang Z; Fang Q; Gu X
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):859-68. PubMed ID: 26357394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rehabilitation of arm function after stroke. Literature review.
    Oujamaa L; Relave I; Froger J; Mottet D; Pelissier JY
    Ann Phys Rehabil Med; 2009 Apr; 52(3):269-93. PubMed ID: 19398398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical Machine Learning Model to Predict the Recovery of Motor Function in Patients with Stroke.
    Kim JK; Lv Z; Park D; Chang MC
    Eur Neurol; 2022; 85(4):273-279. PubMed ID: 35350014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile game-based virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke.
    Choi YH; Ku J; Lim H; Kim YH; Paik NJ
    Restor Neurol Neurosci; 2016 May; 34(3):455-63. PubMed ID: 27163250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research progress on intelligent assessment system for upper limb function of stroke patients].
    Li S; Wu K; Meng Q; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):620-626. PubMed ID: 35788532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral upper limb training with functional electric stimulation in patients with chronic stroke.
    Chan MK; Tong RK; Chung KY
    Neurorehabil Neural Repair; 2009 May; 23(4):357-65. PubMed ID: 19074684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for computer-assisted mental practice in stroke rehabilitation.
    Gaggioli A; Meneghini A; Morganti F; Alcaniz M; Riva G
    Neurorehabil Neural Repair; 2006 Dec; 20(4):503-7. PubMed ID: 17082506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability and validity of the Manual Function Test in patients with stroke.
    Miyamoto S; Kondo T; Suzukamo Y; Michimata A; Izumi S
    Am J Phys Med Rehabil; 2009 Mar; 88(3):247-55. PubMed ID: 19106794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial.
    Samuelkamaleshkumar S; Reethajanetsureka S; Pauljebaraj P; Benshamir B; Padankatti SM; David JA
    Arch Phys Med Rehabil; 2014 Nov; 95(11):2000-5. PubMed ID: 25064777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The volume and timing of upper limb movement in acute stroke rehabilitation: still room for improvement.
    McLaren R; Signal N; Lord S; Taylor S; Henderson J; Taylor D
    Disabil Rehabil; 2020 Nov; 42(22):3237-3242. PubMed ID: 30951402
    [No Abstract]   [Full Text] [Related]  

  • 20. Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial.
    Arya KN; Verma R; Garg RK; Sharma VP; Agarwal M; Aggarwal GG
    Top Stroke Rehabil; 2012; 19(3):193-211. PubMed ID: 22668675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.