These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 25039200)
41. Simulating the emission rate of volatile organic compounds from a quiescent water surface: model development and feasibility evaluation. Cheng WH; Chu FS; Liou CY J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(9):1701-13. PubMed ID: 16134362 [TBL] [Abstract][Full Text] [Related]
42. Diffusion-controlled toluene reference material for VOC emissions testing: international interlaboratory study. Howard-Reed C; Liu Z; Cox S; Leber D; Samarov D; Little JC J Air Waste Manag Assoc; 2014 Apr; 64(4):468-80. PubMed ID: 24843917 [TBL] [Abstract][Full Text] [Related]
43. [Uncertainty analysis of emission inventory for volatile organic compounds from anthropogenic sources in China]. Wei W; Wang SX; Hao JM Huan Jing Ke Xue; 2011 Feb; 32(2):305-12. PubMed ID: 21528547 [TBL] [Abstract][Full Text] [Related]
44. Emission characteristics of VOCs from three fixed-roof p-xylene liquid storage tanks. Lu C; Huang H; Chang S; Hsu S Environ Monit Assess; 2013 Aug; 185(8):6819-30. PubMed ID: 23307101 [TBL] [Abstract][Full Text] [Related]
45. Emissions of volatile organic compounds during the ship-loading of petroleum products: Dispersion modelling and environmental concerns. Milazzo MF; Ancione G; Lisi R J Environ Manage; 2017 Dec; 204(Pt 1):637-650. PubMed ID: 28942192 [TBL] [Abstract][Full Text] [Related]
46. [Study on foreign regulations and standards of stationary sources VOCs emission control]. Zhang GN; Hao ZP; Jiang M; Wang HL Huan Jing Ke Xue; 2011 Dec; 32(12):3501-8. PubMed ID: 22468509 [TBL] [Abstract][Full Text] [Related]
47. The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China. Ma Z; Liu C; Zhang C; Liu P; Ye C; Xue C; Zhao D; Sun J; Du Y; Chai F; Mu Y J Environ Sci (China); 2019 May; 79():121-134. PubMed ID: 30784438 [TBL] [Abstract][Full Text] [Related]
48. Ambient level volatile organic compound (VOC) monitoring using solid adsorbents--recent US EPA studies. McClenny WA; Oliver KD; Jacumin HH; Daughtrey EH J Environ Monit; 2002 Oct; 4(5):695-705. PubMed ID: 12400917 [TBL] [Abstract][Full Text] [Related]
49. Estimating person-to-person variability in VOC emissions from personal care products used during showering. Yeoman AM; Shaw M; Lewis AC Indoor Air; 2021 Jul; 31(4):1281-1291. PubMed ID: 33615569 [TBL] [Abstract][Full Text] [Related]
50. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. Zhang Y; Li R; Fu H; Zhou D; Chen J J Environ Sci (China); 2018 Sep; 71():233-248. PubMed ID: 30195682 [TBL] [Abstract][Full Text] [Related]
51. Volatile organic compounds: sampling methods and their worldwide profile in ambient air. Kumar A; Víden I Environ Monit Assess; 2007 Aug; 131(1-3):301-21. PubMed ID: 17171267 [TBL] [Abstract][Full Text] [Related]
52. [Regulations and policies for control of volatile organic compounds and the emission standards in Taiwan]. Luan ZQ; Wang XQ; Zheng YN; Liu P Huan Jing Ke Xue; 2011 Dec; 32(12):3491-500. PubMed ID: 22468508 [TBL] [Abstract][Full Text] [Related]
53. Assessing the altitude effect on distributions of volatile organic compounds from different sources by principal component analysis. Yang JJ; Liu CC; Chen WH; Yuan CS; Lin C Environ Sci Process Impacts; 2013 May; 15(5):972-85. PubMed ID: 23525228 [TBL] [Abstract][Full Text] [Related]
54. Comparison between Thermal Desorption Tubes and Stainless Steel Canisters Used for Measuring Volatile Organic Compounds in Petrochemical Factories. Chang CP; Lin TC; Lin YW; Hua YC; Chu WM; Lin TY; Lin YW; Wu JD Ann Occup Hyg; 2016 Apr; 60(3):348-60. PubMed ID: 26585828 [TBL] [Abstract][Full Text] [Related]
55. Evaporation of volatile organic compounds from human skin in vitro. Gajjar RM; Miller MA; Kasting GB Ann Occup Hyg; 2013 Aug; 57(7):853-65. PubMed ID: 23609116 [TBL] [Abstract][Full Text] [Related]
56. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. McDonald BC; de Gouw JA; Gilman JB; Jathar SH; Akherati A; Cappa CD; Jimenez JL; Lee-Taylor J; Hayes PL; McKeen SA; Cui YY; Kim SW; Gentner DR; Isaacman-VanWertz G; Goldstein AH; Harley RA; Frost GJ; Roberts JM; Ryerson TB; Trainer M Science; 2018 Feb; 359(6377):760-764. PubMed ID: 29449485 [TBL] [Abstract][Full Text] [Related]
57. Assessment of ambient air quality in Eskişehir, Turkey. Ozden O; Döğeroğlu T; Kara S Environ Int; 2008 Jul; 34(5):678-87. PubMed ID: 18291527 [TBL] [Abstract][Full Text] [Related]
58. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Bari MA; Kindzierski WB Sci Total Environ; 2018 Aug; 631-632():627-640. PubMed ID: 29533799 [TBL] [Abstract][Full Text] [Related]
59. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts. Li G; Wei W; Shao X; Nie L; Wang H; Yan X; Zhang R J Environ Sci (China); 2018 May; 67():78-88. PubMed ID: 29778176 [TBL] [Abstract][Full Text] [Related]
60. An assessment of air quality reflecting the chemosensory irritation impact of mixtures of volatile organic compounds. Abraham MH; Gola JM; Cometto-Muñiz JE Environ Int; 2016 Jan; 86():84-91. PubMed ID: 26550706 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]