These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 25039201)
1. Laboratory testing of a continuous emissions monitor for hydrochloric acid. Dene C; Pisano JT; Durbin TD; Bumiller K; Crabbe K; Muzio LJ J Air Waste Manag Assoc; 2014 Jun; 64(6):670-8. PubMed ID: 25039201 [TBL] [Abstract][Full Text] [Related]
2. Laboratory investigation of three distinct emissions monitors for hydrochloric acid. Dene CE; Pisano JT; Durbin TD; Bumiller K; Crabbe K; Muzio LJ J Air Waste Manag Assoc; 2016 Dec; 66(12):1191-1201. PubMed ID: 26934206 [TBL] [Abstract][Full Text] [Related]
3. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling. Zhuang Y; Pavlish JH Environ Sci Technol; 2012 Apr; 46(8):4657-65. PubMed ID: 22439940 [TBL] [Abstract][Full Text] [Related]
4. Investigation of NH3 emissions from new technology vehicles as a function of vehicle operating conditions. Huai T; Durbin TD; Miller JW; Pisano JT; Sauer CG; Rhee SH; Norbeck JM Environ Sci Technol; 2003 Nov; 37(21):4841-7. PubMed ID: 14620808 [TBL] [Abstract][Full Text] [Related]
5. Carbon dioxide emission tallies for 210 U.S. coal-fired power plants: a comparison of two accounting methods. Quick JC J Air Waste Manag Assoc; 2014 Jan; 64(1):73-9. PubMed ID: 24620404 [TBL] [Abstract][Full Text] [Related]
7. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants. Lee JY; Keener TC; Yang YJ J Air Waste Manag Assoc; 2009 Jun; 59(6):725-32. PubMed ID: 19603740 [TBL] [Abstract][Full Text] [Related]
8. Estimating source strengths of HCl and SO Zhang H; Yu S; Shao L; He P J Environ Sci (China); 2019 Jan; 75():370-377. PubMed ID: 30473302 [TBL] [Abstract][Full Text] [Related]
9. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions. Lee CW; Serre SD; Zhao Y; Lee SJ; Hastings TW J Air Waste Manag Assoc; 2008 Apr; 58(4):484-93. PubMed ID: 18422035 [TBL] [Abstract][Full Text] [Related]
10. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms. Krishnakumar B; Helble JJ Environ Sci Technol; 2007 Nov; 41(22):7870-5. PubMed ID: 18075101 [TBL] [Abstract][Full Text] [Related]
11. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants. Senior CL J Air Waste Manag Assoc; 2006 Jan; 56(1):23-31. PubMed ID: 16499143 [TBL] [Abstract][Full Text] [Related]
12. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas. Niksa S; Fujiwara N J Air Waste Manag Assoc; 2005 Dec; 55(12):1866-75. PubMed ID: 16408691 [TBL] [Abstract][Full Text] [Related]
13. Gas-phase elemental mercury removal in a simulated combustion flue gas using TiO2 with fluorescent light. Cho JH; Lee TG; Eom Y J Air Waste Manag Assoc; 2012 Oct; 62(10):1208-13. PubMed ID: 23155867 [TBL] [Abstract][Full Text] [Related]
14. A new online exhaust gas monitoring system in hydrochloric acid regeneration of cold rolling mills. Tuo L; Zheng X; Chen X Environ Sci Pollut Res Int; 2017 Dec; 24(35):26919-26926. PubMed ID: 26146370 [TBL] [Abstract][Full Text] [Related]
15. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012. Lu Z; Streets DG; de Foy B; Krotkov NA Environ Sci Technol; 2013 Dec; 47(24):13993-4000. PubMed ID: 24274462 [TBL] [Abstract][Full Text] [Related]
16. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Watson JG; Chow JC; Houck JE Chemosphere; 2001 Jun; 43(8):1141-51. PubMed ID: 11368231 [TBL] [Abstract][Full Text] [Related]
17. Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring. Zhang Y; Bo X; Zhao Y; Nielsen CP Environ Pollut; 2019 Aug; 251():415-424. PubMed ID: 31103001 [TBL] [Abstract][Full Text] [Related]
18. Multicomponent remote sensing of vehicle exhaust by dispersive absorption spectroscopy. 2. Direct on-road ammonia measurements. Baum MM; Kiyomiya ES; Kumar S; Lappas AM; Kapinus VA; Lord HC Environ Sci Technol; 2001 Sep; 35(18):3735-41. PubMed ID: 11783653 [TBL] [Abstract][Full Text] [Related]
19. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants. Shemwell BE; Ergut A; Levendis YA J Air Waste Manag Assoc; 2002 May; 52(5):521-34. PubMed ID: 12022692 [TBL] [Abstract][Full Text] [Related]
20. A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide. Thurmond K; Loparo Z; Partridge W; Vasu SS Appl Spectrosc; 2016 Jun; 70(6):962-71. PubMed ID: 27091903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]