These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25039590)

  • 1. The effect of electrode placement and interphase interval on force production during stimulation of the dorsiflexor muscles.
    Springer S; Braun-Benyamin O; Abraham-Shitreet C; Becher M; Laufer Y
    Artif Organs; 2014 Nov; 38(11):E142-6. PubMed ID: 25039590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of interphase interval and stimulation form on dorsiflexors contraction force.
    Springer S
    Technol Health Care; 2015; 23(4):475-83. PubMed ID: 26409910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of an Interphase Interval on Electrically Induced Dorsiflexion Force and Fatigue in Subjects With an Upper Motor Neuron Lesion.
    Becher M; Springer S; Braun-Benyamin O; Laufer Y
    Artif Organs; 2016 Aug; 40(8):778-85. PubMed ID: 27086678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing neuromuscular electrical stimulation for hand opening.
    Shapiro M; Gottlieb U; Springer S
    Somatosens Mot Res; 2019 Mar; 36(1):63-68. PubMed ID: 30898005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of interphase interval during neuromuscular electrical stimulation of the wrist extensors with maximally tolerated current intensity.
    Elboim-Gabyzon M; Awad Y
    Artif Organs; 2021 Feb; 45(2):151-158. PubMed ID: 32780476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brief interphase interval interposed within biphasic pulses enhances the contraction force of the quadriceps femoris muscle.
    Laufer Y
    Physiother Theory Pract; 2013 Aug; 29(6):461-8. PubMed ID: 23301665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.
    Hart DJ; Taylor PN; Chappell PH; Wood DE
    Med Eng Phys; 2006 Jun; 28(5):438-48. PubMed ID: 16140559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Interphase Intervals to Enhance the Evoked Muscular Responses of Transcutaneous Neuromuscular Electrical Stimulation.
    Vargas Luna JL; Krenn M; Mayr W; Cortés Ramírez JA
    Artif Organs; 2017 Dec; 41(12):1145-1152. PubMed ID: 28567858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the relationship between stimulus parameters and a human muscle contraction force during stimulation of the gastrocnemius muscle.
    Kaczmarek P; Huber J; Lisiński P; Witkowska A; Kasiński A
    Artif Organs; 2010 Feb; 34(2):126-35. PubMed ID: 19817731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral nerve excitation and plantar flexion force elicited by electrical stimulation in males and females.
    Alon G; Kantor G; Smith GV
    J Orthop Sports Phys Ther; 1999 Apr; 29(4):208-14; discussion 215-7. PubMed ID: 10322593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental correction of footdrop by electrical stimulation of the peroneal nerve.
    Waters RL; McNeal D; Perry J
    J Bone Joint Surg Am; 1975 Dec; 57(8):1047-54. PubMed ID: 1081538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve.
    Salmons S; Jarvis JC
    Med Eng Phys; 2007 Jul; 29(6):728. PubMed ID: 16997607
    [No Abstract]   [Full Text] [Related]  

  • 13. Myoelectric stimulation on peroneal muscles with electrodes of the muscle belly size attached to the upper shank gives the best effect in resisting simulated ankle sprain motion.
    Fong DT; Wang D; Chu VW; Chan KM
    J Biomech; 2013 Apr; 46(6):1088-91. PubMed ID: 23453396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optimal stimulation pattern for skeletal muscle is dependent on muscle length.
    Mela P; Veltink PH; Huijing PA; Salmons S; Jarvis JC
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):85-93. PubMed ID: 12236451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles.
    Tracy BL
    Hum Mov Sci; 2007 Dec; 26(6):796-807. PubMed ID: 17765988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of electrical stimulation on denervated muscle using implantable electrodes.
    Nemoto K; Williams HB; Nemoto K; Lough J; Chiu RC
    J Reconstr Microsurg; 1988 Jul; 4(4):251-5, 257. PubMed ID: 3262743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of random interpulse interval modulation on neuromuscular fatigue.
    Indurthy M; Griffin L
    Muscle Nerve; 2007 Dec; 36(6):807-15. PubMed ID: 17724736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a catchlike property of human skeletal muscle to reduce fatigue.
    Binder-Macleod SA; Barker CB
    Muscle Nerve; 1991 Sep; 14(9):850-7. PubMed ID: 1922180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional electrical stimulation of dorsiflexor muscle: effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients.
    Sabut SK; Sikdar C; Kumar R; Mahadevappa M
    NeuroRehabilitation; 2011; 29(4):393-400. PubMed ID: 22207067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cutaneous mechanisms of isometric ankle force control.
    Choi JT; Lundbye-Jensen J; Leukel C; Nielsen JB
    Exp Brain Res; 2013 Jul; 228(3):377-84. PubMed ID: 23702971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.