These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25039963)

  • 1. Experimental evolution for generalists and specialists reveals multivariate genetic constraints on thermal reaction norms.
    Berger D; Walters RJ; Blanckenhorn WU
    J Evol Biol; 2014 Sep; 27(9):1975-89. PubMed ID: 25039963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weak sex-specific evolution of locomotor activity of Sepsis punctum (Diptera: Sepsidae) thermal experimental evolution lines.
    Kjærsgaard A; Blanckenhorn WU; Berger D; Esperk T
    J Therm Biol; 2023 Aug; 116():103680. PubMed ID: 37579518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster.
    Condon C; Cooper BS; Yeaman S; Angilletta MJ
    Evolution; 2014 Mar; 68(3):720-8. PubMed ID: 24152128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative genetic divergence and standing genetic (co)variance in thermal reaction norms along latitude.
    Berger D; Postma E; Blanckenhorn WU; Walters RJ
    Evolution; 2013 Aug; 67(8):2385-99. PubMed ID: 23888859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connecting thermal performance curve variation to the genotype: a multivariate QTL approach.
    Latimer CA; Foley BR; Chenoweth SF
    J Evol Biol; 2015 Jan; 28(1):155-68. PubMed ID: 25403928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of fluctuating temperatures during development on fitness-related traits of Scatophaga stercoraria (Diptera: Scathophagidae).
    Kjærsgaard A; Pertoldi C; Loeschcke V; Blanckenhorn WU
    Environ Entomol; 2013 Oct; 42(5):1069-78. PubMed ID: 24331617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus.
    Sheth SN; Angert AL
    Evolution; 2014 Oct; 68(10):2917-31. PubMed ID: 25066881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical test for a zone of canalization in thermal reaction norms.
    Fossen EIF; Pélabon C; Einum S
    J Evol Biol; 2018 Jul; 31(7):936-943. PubMed ID: 29701882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolvability Costs of Niche Expansion.
    Bono LM; Draghi JA; Turner PE
    Trends Genet; 2020 Jan; 36(1):14-23. PubMed ID: 31699305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation.
    Richter-Boix A; Katzenberger M; Duarte H; Quintela M; Tejedo M; Laurila A
    Evolution; 2015 Aug; 69(8):2210-26. PubMed ID: 26118477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated responses to artificial body size selection in growth, development, phenotypic plasticity and juvenile viability in yellow dung flies.
    Teuschl Y; Reim C; Blanckenhorn WU
    J Evol Biol; 2007 Jan; 20(1):87-103. PubMed ID: 17210003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emergence of performance trade-offs during local adaptation: insights from experimental evolution.
    Bono LM; Smith LB; Pfennig DW; Burch CL
    Mol Ecol; 2017 Apr; 26(7):1720-1733. PubMed ID: 28029196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment.
    Cooper VS; Bennett AF; Lenski RE
    Evolution; 2001 May; 55(5):889-96. PubMed ID: 11430649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates.
    Kingsolver JG; Ragland GJ; Shlichta JG
    Evolution; 2004 Jul; 58(7):1521-9. PubMed ID: 15341154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraints on adaptation of Escherichia coli to mixed-resource environments increase over time.
    Satterwhite RS; Cooper TF
    Evolution; 2015 Aug; 69(8):2067-78. PubMed ID: 26103008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of Paramecium caudatum to variable conditions of temperature stress.
    Duncan AB; Fellous S; Quillery E; Kaltz O
    Res Microbiol; 2011 Nov; 162(9):939-44. PubMed ID: 21575715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
    Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU
    J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect selection of thermal tolerance during experimental evolution of Drosophila melanogaster.
    Condon C; Acharya A; Adrian GJ; Hurliman AM; Malekooti D; Nguyen P; Zelic MH; Angilletta MJ
    Ecol Evol; 2015 May; 5(9):1873-80. PubMed ID: 26140203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EVOLUTIONARY ADAPTATION TO TEMPERATURE. I. FITNESS RESPONSES OF ESCHERICHIA COLI TO CHANGES IN ITS THERMAL ENVIRONMENT.
    Bennett AF; Lenski RE; Mittler JE
    Evolution; 1992 Feb; 46(1):16-30. PubMed ID: 28564952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs.
    Oakley CG; Ågren J; Atchison RA; Schemske DW
    Mol Ecol; 2014 Sep; 23(17):4304-15. PubMed ID: 25039860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.