These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 25040001)
41. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Zeriouh H; de Vicente A; Pérez-García A; Romero D Environ Microbiol; 2014 Jul; 16(7):2196-211. PubMed ID: 24308294 [TBL] [Abstract][Full Text] [Related]
42. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Luo C; Liu X; Zhou H; Wang X; Chen Z Appl Environ Microbiol; 2015 Jan; 81(1):422-31. PubMed ID: 25362061 [TBL] [Abstract][Full Text] [Related]
43. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. Gong AD; Li HP; Yuan QS; Song XS; Yao W; He WJ; Zhang JB; Liao YC PLoS One; 2015; 10(2):e0116871. PubMed ID: 25689464 [TBL] [Abstract][Full Text] [Related]
44. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Uttlová P; Pinkas D; Bechyňková O; Fišer R; Svobodová J; Seydlová G Biochim Biophys Acta; 2016 Dec; 1858(12):2965-2971. PubMed ID: 27620333 [TBL] [Abstract][Full Text] [Related]
45. Impact of the Purification Process on the Spray-Drying Performances of the Three Families of Lipopeptide Biosurfactant Produced by Vassaux A; Rannou M; Peers S; Daboudet T; Jacques P; Coutte F Front Bioeng Biotechnol; 2021; 9():815337. PubMed ID: 35004661 [TBL] [Abstract][Full Text] [Related]
46. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Falardeau J; Wise C; Novitsky L; Avis TJ J Chem Ecol; 2013 Jul; 39(7):869-78. PubMed ID: 23888387 [TBL] [Abstract][Full Text] [Related]
47. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. Bordiec S; Paquis S; Lacroix H; Dhondt S; Ait Barka E; Kauffmann S; Jeandet P; Mazeyrat-Gourbeyre F; Clément C; Baillieul F; Dorey S J Exp Bot; 2011 Jan; 62(2):595-603. PubMed ID: 20881012 [TBL] [Abstract][Full Text] [Related]
48. Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Aleti G; Lehner S; Bacher M; Compant S; Nikolic B; Plesko M; Schuhmacher R; Sessitsch A; Brader G Environ Microbiol; 2016 Sep; 18(8):2634-45. PubMed ID: 27306252 [TBL] [Abstract][Full Text] [Related]
49. Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. Pathak KV; Keharia H 3 Biotech; 2014 Jun; 4(3):283-295. PubMed ID: 28324431 [TBL] [Abstract][Full Text] [Related]
50. Ion trap mass spectrometry of surfactins produced by Bacillus subtilis SZMC 6179J reveals novel fragmentation features of cyclic lipopeptides. Bóka B; Manczinger L; Kecskeméti A; Chandrasekaran M; Kadaikunnan S; Alharbi NS; Vágvölgyi C; Szekeres A Rapid Commun Mass Spectrom; 2016 Jul; 30(13):1581-90. PubMed ID: 27321846 [TBL] [Abstract][Full Text] [Related]
51. Induction of resistance in wheat against powdery mildew by bacterial cyclic lipopeptides. Khong NG; Randoux B; Tayeh Ch; Coutte F; Bourdon N; Tisserant B; Laruelle F; Jacques P; Reignault P Commun Agric Appl Biol Sci; 2012; 77(3):39-51. PubMed ID: 23878959 [TBL] [Abstract][Full Text] [Related]
52. Antifungal Activity of Lipopeptides From Toral L; Rodríguez M; Béjar V; Sampedro I Front Microbiol; 2018; 9():1315. PubMed ID: 29997581 [TBL] [Abstract][Full Text] [Related]
53. Antifungal Activities of Desmyttere H; Deweer C; Muchembled J; Sahmer K; Jacquin J; Coutte F; Jacques P Front Microbiol; 2019; 10():2327. PubMed ID: 31695685 [TBL] [Abstract][Full Text] [Related]
54. Nematicidal lipopeptides from Bacillus paralicheniformis and Bacillus subtilis: A comparative study. Chavarria-Quicaño E; De la Torre-González F; González-Riojas M; Rodríguez-González J; Asaff-Torres A Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1537-1549. PubMed ID: 36719435 [TBL] [Abstract][Full Text] [Related]
55. High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species. Geissler M; Oellig C; Moss K; Schwack W; Henkel M; Hausmann R J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Feb; 1044-1045():214-224. PubMed ID: 28153674 [TBL] [Abstract][Full Text] [Related]
56. Transcriptome and metabolome analyses reveal that Yang Q; Zhang H; You J; Yang J; Zhang Q; Zhao J; Aimaier R; Zhang J; Han S; Zhao H; Zhao H Front Plant Sci; 2022; 13():1088220. PubMed ID: 36815011 [TBL] [Abstract][Full Text] [Related]
58. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis. Wang X; Chen Z; Feng H; Chen X; Wei L Microb Cell Fact; 2019 Aug; 18(1):141. PubMed ID: 31426791 [TBL] [Abstract][Full Text] [Related]
59. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648 [TBL] [Abstract][Full Text] [Related]
60. Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production. Verhagen B; Trotel-Aziz P; Jeandet P; Baillieul F; Aziz A Phytopathology; 2011 Jul; 101(7):768-77. PubMed ID: 21425931 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]