These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25040401)

  • 1. Amyloid-aβ Peptide in olfactory mucosa and mesenchymal stromal cells of mild cognitive impairment and Alzheimer's disease patients.
    Ayala-Grosso CA; Pieruzzini R; Diaz-Solano D; Wittig O; Abrante L; Vargas L; Cardier J
    Brain Pathol; 2015 Mar; 25(2):136-45. PubMed ID: 25040401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olfactory Dysfunction Is Associated with Cerebral Amyloid Deposition and Cognitive Function in the Trajectory of Alzheimer's Disease.
    Wang SM; Kang DW; Um YH; Kim S; Lee CU; Lim HK
    Biomolecules; 2023 Aug; 13(9):. PubMed ID: 37759734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of amyloid-beta changes on cognitive outcomes in Alzheimer's disease: analysis of clinical trials using a quantitative systems pharmacology model.
    Geerts H; Spiros A; Roberts P
    Alzheimers Res Ther; 2018 Feb; 10(1):14. PubMed ID: 29394903
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Oveisgharan S; Buchman AS; Yu L; Farfel J; Hachinski V; Gaiteri C; De Jager PL; Schneider JA; Bennett DA
    Neurology; 2018 Jun; 90(24):e2127-e2134. PubMed ID: 29752306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the apolipoprotein E ε4 allele and olfactory function on odor identification networks.
    Frank C; Albertazzi A; Murphy C
    Brain Behav; 2024 May; 14(5):e3524. PubMed ID: 38702902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omega-3 fatty acids increase the unfolded protein response and improve amyloid-β phagocytosis by macrophages of patients with mild cognitive impairment.
    Olivera-Perez HM; Lam L; Dang J; Jiang W; Rodriguez F; Rigali E; Weitzman S; Porter V; Rubbi L; Morselli M; Pellegrini M; Fiala M
    FASEB J; 2017 Oct; 31(10):4359-4369. PubMed ID: 28634213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variables associated with hippocampal atrophy rate in normal aging and mild cognitive impairment.
    Nosheny RL; Insel PS; Truran D; Schuff N; Jack CR; Aisen PS; Shaw LM; Trojanowski JQ; Weiner MW;
    Neurobiol Aging; 2015 Jan; 36(1):273-82. PubMed ID: 25175807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of olfactory dysfunction in mild cognitive impairment and Alzheimer's disease: A meta-analysis.
    Bouhaben J; Delgado-Lima AH; Delgado-Losada ML
    Arch Gerontol Geriatr; 2024 Aug; 123():105425. PubMed ID: 38615524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Amyloid Burden and APOE on Rates of Cognitive Impairment in Late Life Depression.
    Rhodes E; Insel PS; Butters MA; Morin R; Bickford D; Tosun D; Gessert D; Rosen HJ; Aisen P; Raman R; Landau S; Saykin A; Toga A; Jack CR; Weiner MW; Nelson C; Mackin S; ;
    J Alzheimers Dis; 2021; 80(3):991-1002. PubMed ID: 33682706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut mycobiome and its interaction with diet, gut bacteria and alzheimer's disease markers in subjects with mild cognitive impairment: A pilot study.
    Nagpal R; Neth BJ; Wang S; Mishra SP; Craft S; Yadav H
    EBioMedicine; 2020 Sep; 59():102950. PubMed ID: 32861197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of interleukin-33 in patients with mild cognitive impairment and Alzheimer's disease.
    Liang CS; Su KP; Tsai CL; Lee JT; Chu CS; Yeh TC; Su MW; Lin GY; Lin YK; Chu HT; Tsai CK; Yang FC
    Alzheimers Res Ther; 2020 Jul; 12(1):86. PubMed ID: 32678011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent Hypoxia-Hyperoxia Training Improves Cognitive Function and Decreases Circulating Biomarkers of Alzheimer's Disease in Patients with Mild Cognitive Impairment: A Pilot Study.
    Serebrovska ZO; Serebrovska TV; Kholin VA; Tumanovska LV; Shysh AM; Pashevin DA; Goncharov SV; Stroy D; Grib ON; Shatylo VB; Bachinskaya NY; Egorov E; Xi L; Dosenko VE
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31671598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic phenotyping reveals an emerging role of ammonia abnormality in Alzheimer's disease.
    Chen T; Pan F; Huang Q; Xie G; Chao X; Wu L; Wang J; Cui L; Sun T; Li M; Wang Y; Guan Y; Zheng X; Ren Z; Guo Y; Wang L; Zhou K; Zhao A; Guo Q; Xie F; Jia W
    Nat Commun; 2024 May; 15(1):3796. PubMed ID: 38714706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of transcranial direct current stimulation on cognition in MCI with Alzheimer's disease risk factors using Bayesian analysis.
    Kang DW; Wang SM; Um YH; Kim S; Kim T; Kim D; Lee CU; Lim HK
    Sci Rep; 2024 Aug; 14(1):18818. PubMed ID: 39138281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Insertion Within SIRPβ1 Shows a Dual Effect Over Alzheimer's Disease Cognitive Decline Altering the Microglial Response.
    García-Alberca JM; de Rojas I; Sanchez-Mejias E; Garrido-Martín D; Gonzalez-Palma L; Jimenez S; Pino-Angeles A; Cruz-Gamero JM; Mendoza S; Alarcón-Martín E; ; Muñoz-Castro C; Real LM; Tena JJ; Polvillo R; Govantes F; Lopez A; Royo-Aguado JL; Navarro V; Gonzalez I; Ruiz M; Reyes-Engel A; Gris E; Bravo MJ; Lopez-Gutierrez L; Mejias-Ortega M; De la Guía P; López de la Rica M; Ocejo O; Torrecilla J; Zafra C; Nieto MD; Urbano C; Jiménez-Sánchez R; Pareja N; Luque M; García-Peralta M; Carrillejo R; Furniet MDC; Rueda L; Sánchez-Fernández A; Mancilla T; Peña I; García-Casares N; Moreno-Grau S; Hernández I; Montrreal L; Quintela I; González-Pérez A; Calero M; Franco-Macías E; Macías J; Menéndez-González M; Frank-García A; Huerto Vilas R; Diez-Fairen M; Lage C; García-Madrona S; García-González P; Valero S; Sotolongo-Grau O; Pérez-Cordón A; Rábano A; Arias Pastor A; Pastor AB; Espinosa A; Corma-Gómez A; Martín Montes Á; Sanabria Á; Martínez Rodríguez C; Buiza-Rueda D; Rodriguez-Rodriguez E; Ortega G; Alvarez I; Rosas Allende I; Pineda JA; Rosende-Roca M; Bernal Sánchez-Arjona M; Fernández-Fuertes M; Alegret M; Roberto N; Del Ser T; Garcia-Ribas G; Sánchez-Juan P; Pastor P; Piñol-Ripoll G; Bullido MJ; Álvarez V; Mir P; Medina M; Marquié M; Sáez ME; Carracedo Á; Laplana M; Tomas-Gallardo L; Orellana A; Tárraga L; Boada M; Fibla Palazon J; Vitorica J; Ruiz A; Guigo R; Gutierrez A; Royo JL
    J Alzheimers Dis; 2024; 98(2):601-618. PubMed ID: 38427484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory dysfunction is a risk factor for the comorbidity of mild cognitive impairment and Type 2 diabetes mellitus.
    Gong L; Xie J; Liu J; Tang G; Lin W; Zhang Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2021 Aug; 46(8):831-837. PubMed ID: 34565726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A brief olfactory test for Alzheimer's disease.
    Stamps JJ; Bartoshuk LM; Heilman KM
    J Neurol Sci; 2013 Oct; 333(1-2):19-24. PubMed ID: 23927938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Cholinergic, Adrenergic, and Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer's Disease.
    Cheng YJ; Lin CH; Lane HY
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelets and Neurodegenerative Diseases: Current Knowledge and Future Perspectives.
    Gallo A; Lipari A; Di Francesco S; Ianuà E; Liperoti R; Cipriani MC; Martone AM; De Candia E; Landi F; Montalto M
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38927999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumetry of Olfactory Structures in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and a Meta-Analysis.
    Jobin B; Boller B; Frasnelli J
    Brain Sci; 2021 Jul; 11(8):. PubMed ID: 34439629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.