These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25040808)

  • 41. Bafilomycin A1 inhibits the action of tetanus toxin in spinal cord neurons in cell culture.
    Williamson LC; Neale EA
    J Neurochem; 1994 Dec; 63(6):2342-5. PubMed ID: 7964755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Central effects of tetanus and botulinum neurotoxins.
    Caleo M; Schiavo G
    Toxicon; 2009 Oct; 54(5):593-9. PubMed ID: 19264088
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin.
    Capogna M; McKinney RA; O'Connor V; Gähwiler BH; Thompson SM
    J Neurosci; 1997 Oct; 17(19):7190-202. PubMed ID: 9295365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Botulinum and Tetanus Neurotoxins.
    Dong M; Masuyer G; Stenmark P
    Annu Rev Biochem; 2019 Jun; 88():811-837. PubMed ID: 30388027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F.
    Fu Z; Chen C; Barbieri JT; Kim JJ; Baldwin MR
    Biochemistry; 2009 Jun; 48(24):5631-41. PubMed ID: 19476346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons.
    Pirazzini M; Rossetto O; Bolognese P; Shone CC; Montecucco C
    Cell Microbiol; 2011 Nov; 13(11):1731-43. PubMed ID: 21790947
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin.
    Bigalke H; Dimpfel W; Habermann E
    Naunyn Schmiedebergs Arch Pharmacol; 1978 Jun; 303(2):133-8. PubMed ID: 673020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two Feet on the Membrane: Uptake of Clostridial Neurotoxins.
    Rummel A
    Curr Top Microbiol Immunol; 2017; 406():1-37. PubMed ID: 27921176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1.
    Deinhardt K; Berninghausen O; Willison HJ; Hopkins CR; Schiavo G
    J Cell Biol; 2006 Jul; 174(3):459-71. PubMed ID: 16880274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons.
    Herreros J; Ng T; Schiavo G
    Mol Biol Cell; 2001 Oct; 12(10):2947-60. PubMed ID: 11598183
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity.
    Rossetto O; Caccin P; Rigoni M; Tonello F; Bortoletto N; Stevens RC; Montecucco C
    Toxicon; 2001 Aug; 39(8):1151-9. PubMed ID: 11306125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tyrosine-1290 of tetanus neurotoxin plays a key role in its binding to gangliosides and functional binding to neurones.
    Sutton JM; Chow-Worn O; Spaven L; Silman NJ; Hallis B; Shone CC
    FEBS Lett; 2001 Mar; 493(1):45-9. PubMed ID: 11278003
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The 25 kDa H
    Deppe J; Weisemann J; Mahrhold S; Rummel A
    Toxins (Basel); 2020 Nov; 12(12):. PubMed ID: 33255952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tetanus toxin and botulinum A neurotoxin inhibit and at higher concentrations enhance noradrenaline outflow from particulate brain cortex in batch.
    Habermann E
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Dec; 318(2):105-11. PubMed ID: 7329453
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interneuronal Transfer and Distal Action of Tetanus Toxin and Botulinum Neurotoxins A and D in Central Neurons.
    Bomba-Warczak E; Vevea JD; Brittain JM; Figueroa-Bernier A; Tepp WH; Johnson EA; Yeh FL; Chapman ER
    Cell Rep; 2016 Aug; 16(7):1974-87. PubMed ID: 27498860
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor.
    Rummel A; Häfner K; Mahrhold S; Darashchonak N; Holt M; Jahn R; Beermann S; Karnath T; Bigalke H; Binz T
    J Neurochem; 2009 Sep; 110(6):1942-54. PubMed ID: 19650874
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Molecular biology of neurosecretion and its inhibition bu tetanus and botulinum toxins (review)].
    Veit M
    Berl Munch Tierarztl Wochenschr; 1999 Jun; 112(5):186-91. PubMed ID: 10399406
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins.
    Sikorra S; Henke T; Galli T; Binz T
    J Biol Chem; 2008 Jul; 283(30):21145-52. PubMed ID: 18511418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction.
    Hua SY; Raciborska DA; Trimble WS; Charlton MP
    J Neurophysiol; 1998 Dec; 80(6):3233-46. PubMed ID: 9862918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A conformational change of C fragment of tetanus neurotoxin reduces its ganglioside-binding activity but does not destroy its immunogenicity.
    Yu R; Yi S; Yu C; Fang T; Liu S; Yu T; Song X; Fu L; Hou L; Chen W
    Clin Vaccine Immunol; 2011 Oct; 18(10):1668-72. PubMed ID: 21813664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.