These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25041699)

  • 1. Complement and blood-brain barrier integrity.
    Jacob A; Alexander JJ
    Mol Immunol; 2014 Oct; 61(2):149-52. PubMed ID: 25041699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C5a alters blood-brain barrier integrity in a human in vitro model of systemic lupus erythematosus.
    Mahajan SD; Parikh NU; Woodruff TM; Jarvis JN; Lopez M; Hennon T; Cunningham P; Quigg RJ; Schwartz SA; Alexander JJ
    Immunology; 2015 Sep; 146(1):130-43. PubMed ID: 26059553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Septic encephalopathy: inflammation in man and mouse.
    Jacob A; Brorson JR; Alexander JJ
    Neurochem Int; 2011 Mar; 58(4):472-6. PubMed ID: 21219956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alzheimer's disease, autoimmunity and inflammation. The good, the bad and the ugly.
    Sardi F; Fassina L; Venturini L; Inguscio M; Guerriero F; Rolfo E; Ricevuti G
    Autoimmun Rev; 2011 Dec; 11(2):149-53. PubMed ID: 21996556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus.
    Mahajan SD; Tutino VM; Redae Y; Meng H; Siddiqui A; Woodruff TM; Jarvis JN; Hennon T; Schwartz S; Quigg RJ; Alexander JJ
    Immunology; 2016 Aug; 148(4):407-19. PubMed ID: 27213693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C5a/CD88 signaling alters blood-brain barrier integrity in lupus through nuclear factor-κB.
    Jacob A; Hack B; Chen P; Quigg RJ; Alexander JJ
    J Neurochem; 2011 Dec; 119(5):1041-51. PubMed ID: 21929539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glia-induced reversible disruption of blood-brain barrier integrity and neuropathological response of the neurovascular unit.
    Willis CL
    Toxicol Pathol; 2011 Jan; 39(1):172-85. PubMed ID: 21189317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered blood-brain barrier transport in neuro-inflammatory disorders.
    Schenk GJ; de Vries HE
    Drug Discov Today Technol; 2016 Jun; 20():5-11. PubMed ID: 27986224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The blood-brain barrier: an overview: structure, regulation, and clinical implications.
    Ballabh P; Braun A; Nedergaard M
    Neurobiol Dis; 2004 Jun; 16(1):1-13. PubMed ID: 15207256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress.
    Zhang M; Mao Y; Ramirez SH; Tuma RF; Chabrashvili T
    Neuroscience; 2010 Dec; 171(3):852-8. PubMed ID: 20870012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does VEGF secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight-junction proteins in central nervous system leukemia?
    Feng S; Huang Y; Chen Z
    Med Hypotheses; 2011 May; 76(5):618-21. PubMed ID: 21398042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier.
    Gorina R; Lyck R; Vestweber D; Engelhardt B
    J Immunol; 2014 Jan; 192(1):324-37. PubMed ID: 24259506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase.
    Kaya M; Ahishali B
    Methods Mol Biol; 2011; 763():369-82. PubMed ID: 21874465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-brain barrier (BBB) and the complement landscape.
    Alexander JJ
    Mol Immunol; 2018 Oct; 102():26-31. PubMed ID: 30007547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-Type Plasminogen Activator and Tenecteplase-Mediated Increase in Blood Brain Barrier Permeability Involves Cell Intrinsic Complement.
    Keragala CB; Woodruff TM; Liu Z; Niego B; Ho H; McQuilten Z; Medcalf RL
    Front Neurol; 2020; 11():577272. PubMed ID: 33363504
    [No Abstract]   [Full Text] [Related]  

  • 16. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes.
    Shawahna R; Decleves X; Scherrmann JM
    Curr Drug Metab; 2013 Jan; 14(1):120-36. PubMed ID: 23215812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Disruption of the blood-brain barrier in inflammatory neurological diseases].
    Shimizu F; Kanda T
    Brain Nerve; 2013 Feb; 65(2):165-76. PubMed ID: 23399674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models.
    Hellinger E; Veszelka S; Tóth AE; Walter F; Kittel A; Bakk ML; Tihanyi K; Háda V; Nakagawa S; Duy TD; Niwa M; Deli MA; Vastag M
    Eur J Pharm Biopharm; 2012 Oct; 82(2):340-51. PubMed ID: 22906709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro models of the blood-brain barrier.
    Czupalla CJ; Liebner S; Devraj K
    Methods Mol Biol; 2014; 1135():415-37. PubMed ID: 24510883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.