BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25041731)

  • 1. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.
    Zhang P; Tong M; Yuan S; Liao P
    J Contam Hydrol; 2014 Aug; 164():299-307. PubMed ID: 25041731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.
    Sharma A; Adapureddy SM; Goel S
    J Environ Sci Eng; 2014 Apr; 56(2):209-14. PubMed ID: 26563067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
    Li L; van Genuchten CM; Addy SE; Yao J; Gao N; Gadgil AJ
    Environ Sci Technol; 2012 Nov; 46(21):12038-45. PubMed ID: 22978489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.
    Lakshmanan D; Clifford DA; Samanta G
    Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.
    Amrose S; Gadgil A; Srinivasan V; Kowolik K; Muller M; Huang J; Kostecki R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1019-30. PubMed ID: 23573922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxidation of As(III) in groundwater using biological manganese removal filtration columns.
    Yang H; Sun W; Ge H; Yao R
    Environ Technol; 2015; 36(21):2732-9. PubMed ID: 26056846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack.
    Rosales M; Coreño O; Nava JL
    Chemosphere; 2018 Nov; 211():149-155. PubMed ID: 30071426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.
    Niazi NK; Bibi I; Shahid M; Ok YS; Burton ED; Wang H; Shaheen SM; Rinklebe J; Lüttge A
    Environ Pollut; 2018 Jan; 232():31-41. PubMed ID: 28966026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.
    van Genuchten CM; Bandaru SR; Surorova E; Amrose SE; Gadgil AJ; Peña J
    Chemosphere; 2016 Jun; 153():270-9. PubMed ID: 27018519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.
    Gill LW; O'Farrell C
    Water Res; 2015 Dec; 86():46-57. PubMed ID: 26093797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment.
    Goren AY; Kobya M; Oncel MS
    Chemosphere; 2020 Jul; 251():126363. PubMed ID: 32151809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of arsenic on manganese dioxide synthesized by solid state reaction.
    Dalvi AA; Ajith N; Swain KK; Verma R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(8):866-73. PubMed ID: 26030693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.
    Mohora E; Rončević S; Dalmacija B; Agbaba J; Watson M; Karlović E; Dalmacija M
    J Hazard Mater; 2012 Oct; 235-236():257-64. PubMed ID: 22902131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.
    Xie X; Wang Y; Pi K; Liu C; Li J; Liu Y; Wang Z; Duan M
    Sci Total Environ; 2015 Sep; 527-528():38-46. PubMed ID: 25956146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study.
    van Genuchten CM; Addy SE; Peña J; Gadgil AJ
    Environ Sci Technol; 2012 Jan; 46(2):986-94. PubMed ID: 22132945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.
    Xie W; Yuan S; Mao X; Hu W; Liao P; Tong M; Alshawabkeh AN
    Water Res; 2013 Jul; 47(11):3573-82. PubMed ID: 23726693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and comparison of Ti/TiO
    Moura de Salles Pupo M; Albahaca Oliva JM; Barrios Eguiluz KI; Salazar-Banda GR; Radjenovic J
    Chemosphere; 2020 Aug; 253():126701. PubMed ID: 32302902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cost-effective system for in-situ geological arsenic adsorption from groundwater.
    Shan H; Ma T; Wang Y; Zhao J; Han H; Deng Y; He X; Dong Y
    J Contam Hydrol; 2013 Nov; 154():1-9. PubMed ID: 24035830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic attenuation by oxidized aquifer sediments in Bangladesh.
    Stollenwerk KG; Breit GN; Welch AH; Yount JC; Whitney JW; Foster AL; Uddin MN; Majumder RK; Ahmed N
    Sci Total Environ; 2007 Jul; 379(2-3):133-50. PubMed ID: 17250876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.