BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 25041731)

  • 1. Deep-dive into iron-based co-precipitation of arsenic: A review of mechanisms derived from synchrotron techniques and implications for groundwater treatment.
    Ahmad A; van Genuchten CM
    Water Res; 2024 Feb; 249():120970. PubMed ID: 38064786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of dissolved organic matter during groundwater arsenite removal using air cathode iron electrocoagulation.
    Yuan Y; Chen J; Zhang H; Wu Y; Xiao Y; Huang W; Wang Y; Tang J; Zhang F
    Chemosphere; 2024 Jun; 358():142083. PubMed ID: 38701859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient removal of As(III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system.
    Yin H; Liu L; Ma J; Zhang C; Qiu G
    Water Res; 2023 Nov; 246():120734. PubMed ID: 37862875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical arsenite oxidation for drinking water treatment: Mechanisms, by-product formation and energy consumption.
    Kraaijeveld E; Rijsdijk S; van der Poel S; van der Hoek JP; Rabaey K; van Halem D
    Water Res; 2024 Apr; 253():121227. PubMed ID: 38377921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced remediation in the presence of ferrous iron and carbonate-containing water by oxygen-induced oxidation of organic contaminants.
    Joksimoski S; Kerpen K; Telgheder U
    Chemosphere; 2024 May; 356():141856. PubMed ID: 38582171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in enhancing the remediation performance of microbial fuel cells for contaminated groundwater.
    Liang Y; Yu D; Ma H; Zhang T; Chen Y; Akbar N; Pu S
    J Environ Sci (China); 2024 Nov; 145():28-49. PubMed ID: 38844322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical oxidation and mechanism of sulfanilamide from groundwater in a flow-through system using carbon fiber (CF) anode.
    Kim JG; Kim HB; Jeong WG; Lee KH; Baek K
    Chemosphere; 2024 Feb; 349():140817. PubMed ID: 38040260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives.
    Nicomel NR; Leus K; Folens K; Van Der Voort P; Du Laing G
    Int J Environ Res Public Health; 2015 Dec; 13(1):ijerph13010062. PubMed ID: 26703687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency removal of As(iii) from groundwater using siderite as the iron source in the electrocoagulation process.
    Yu H; Li J; Qu W; Wang W; Wang J
    RSC Adv; 2024 Jun; 14(27):19206-19218. PubMed ID: 38882474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic treatment of groundwater co-contaminated by toluene and copper in a single chamber bioelectrochemical system.
    Resitano M; Tucci M; Mezzi A; Kaciulis S; Matturro B; D'Ugo E; Bertuccini L; Fazi S; Rossetti S; Aulenta F; Cruz Viggi C
    Bioelectrochemistry; 2024 Aug; 158():108711. PubMed ID: 38626620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic coupling of arsenic, carbon, nitrogen, and sulfur in high arsenic geothermal groundwater: Evidence from molecular mechanisms to community ecology.
    Zhang LZ; Xing SP; Huang FY; Xiu W; Rensing C; Zhao Y; Guo H
    Water Res; 2024 Feb; 249():120953. PubMed ID: 38071906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ groundwater remediation of contaminant mixture of As(III), Cr(VI), and sulfanilamide via electrochemical degradation/transformation using pyrite.
    Kim JG; Sarrouf S; Ehsan MF; Alshawabkeh AN; Baek K
    J Hazard Mater; 2024 Jul; 473():134648. PubMed ID: 38781853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrocene-based metal-organic frameworks with dual synergistic active sites for selectively electrochemical removal of arsenic from contaminated water.
    Shi W; Wang X; Gao F; Wang Z
    Water Res; 2024 Jun; 260():121915. PubMed ID: 38878309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode.
    Qin Y; Li Y; Tian Z; Wu Y; Cui Y
    Nanoscale Res Lett; 2016 Dec; 11(1):32. PubMed ID: 26787051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.
    Zhang P; Tong M; Yuan S; Liao P
    J Contam Hydrol; 2014 Aug; 164():299-307. PubMed ID: 25041731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.
    Sharma A; Adapureddy SM; Goel S
    J Environ Sci Eng; 2014 Apr; 56(2):209-14. PubMed ID: 26563067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
    Li L; van Genuchten CM; Addy SE; Yao J; Gao N; Gadgil AJ
    Environ Sci Technol; 2012 Nov; 46(21):12038-45. PubMed ID: 22978489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.
    Lakshmanan D; Clifford DA; Samanta G
    Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of titanium dioxide in arsenic removal from water: A review.
    Guan X; Du J; Meng X; Sun Y; Sun B; Hu Q
    J Hazard Mater; 2012 May; 215-216():1-16. PubMed ID: 22445257
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.