BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25041792)

  • 1. Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus.
    Rubio ME; Fukazawa Y; Kamasawa N; Clarkson C; Molnár E; Shigemoto R
    J Comp Neurol; 2014 Dec; 522(18):4023-42. PubMed ID: 25041792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells.
    Rubio ME; Matsui K; Fukazawa Y; Kamasawa N; Harada H; Itakura M; Molnár E; Abe M; Sakimura K; Shigemoto R
    Brain Struct Funct; 2017 Nov; 222(8):3375-3393. PubMed ID: 28397107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redistribution of synaptic AMPA receptors at glutamatergic synapses in the dorsal cochlear nucleus as an early response to cochlear ablation in rats.
    Rubio ME
    Hear Res; 2006; 216-217():154-67. PubMed ID: 16644159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling.
    Masugi-Tokita M; Tarusawa E; Watanabe M; Molnár E; Fujimoto K; Shigemoto R
    J Neurosci; 2007 Feb; 27(8):2135-44. PubMed ID: 17314308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses.
    Tarusawa E; Matsui K; Budisantoso T; Molnár E; Watanabe M; Matsui M; Fukazawa Y; Shigemoto R
    J Neurosci; 2009 Oct; 29(41):12896-908. PubMed ID: 19828804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input.
    Gardner SM; Trussell LO; Oertel D
    J Neurosci; 1999 Oct; 19(20):8721-9. PubMed ID: 10516291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss.
    Whiting B; Moiseff A; Rubio ME
    Neuroscience; 2009 Nov; 163(4):1264-76. PubMed ID: 19646510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPA and NMDA Receptor Trafficking at Cocaine-Generated Synapses.
    Wang YQ; Huang YH; Balakrishnan S; Liu L; Wang YT; Nestler EJ; Schlüter OM; Dong Y
    J Neurosci; 2021 Mar; 41(9):1996-2011. PubMed ID: 33436529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus.
    Pliss L; Yang H; Xu-Friedman MA
    J Neurophysiol; 2009 Nov; 102(5):2627-37. PubMed ID: 19726731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra.
    Chatha BT; Bernard V; Streit P; Bolam JP
    Neuroscience; 2000; 101(4):1037-51. PubMed ID: 11113353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A, and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal.
    Das P; Zerda R; Alvarez FJ; Tietz EI
    J Comp Neurol; 2010 Nov; 518(21):4311-28. PubMed ID: 20853509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the molecular layer of the primate dorsal cochlear nucleus.
    Rubio ME; Gudsnuk KA; Smith Y; Ryugo DK
    Neuroscience; 2008 Jun; 154(1):99-113. PubMed ID: 18222048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities.
    Ganeshina O; Berry RW; Petralia RS; Nicholson DA; Geinisman Y
    J Comp Neurol; 2004 Jan; 468(1):86-95. PubMed ID: 14648692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colocalization of distinct NMDA receptor subtypes at excitatory synapses in the entorhinal cortex.
    Beesley S; Sullenberger T; Pilli J; Abbasi S; Gunjan A; Kumar SS
    J Neurophysiol; 2019 Jan; 121(1):238-254. PubMed ID: 30461362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Assisted High-Throughput Analysis of Freeze-Fracture Replica Images Applied to Glutamate Receptors and Calcium Channels at Hippocampal Synapses.
    Kleindienst D; Montanaro J; Bhandari P; Case MJ; Fukazawa Y; Shigemoto R
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic inputs to stellate cells in the ventral cochlear nucleus.
    Ferragamo MJ; Golding NL; Oertel D
    J Neurophysiol; 1998 Jan; 79(1):51-63. PubMed ID: 9425176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina.
    Zhang J; Diamond JS
    J Comp Neurol; 2006 Oct; 498(6):810-20. PubMed ID: 16927255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct cerebellar engrams in short-term and long-term motor learning.
    Wang W; Nakadate K; Masugi-Tokita M; Shutoh F; Aziz W; Tarusawa E; Lorincz A; Molnár E; Kesaf S; Li YQ; Fukazawa Y; Nagao S; Shigemoto R
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):E188-93. PubMed ID: 24367085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential requirement for NMDAR activity in SAP97β-mediated regulation of the number and strength of glutamatergic AMPAR-containing synapses.
    Liu M; Lewis LD; Shi R; Brown EN; Xu W
    J Neurophysiol; 2014 Feb; 111(3):648-58. PubMed ID: 24225540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits.
    Wang YX; Wenthold RJ; Ottersen OP; Petralia RS
    J Neurosci; 1998 Feb; 18(3):1148-60. PubMed ID: 9437035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.