These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25041885)

  • 1. Assessment of the influence of body composition on bone mass in children and adolescents based on a functional analysis of the muscle-bone relationship.
    Golec J; Chlebna-Sokół D
    Ortop Traumatol Rehabil; 2014; 16(2):153-63. PubMed ID: 25041885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal and muscular status in juveniles with GFD treated clinical and newly diagnosed atypical celiac disease--preliminary data.
    Płudowski P; Karczmarewicz E; Socha J; Matusik H; Syczewska M; Lorenc RS
    J Clin Densitom; 2007; 10(1):76-85. PubMed ID: 17289529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone mass and body composition in children and adolescents with primary hypertension: preliminary data.
    Pludowski P; Litwin M; Sladowska J; Antoniewicz J; Niemirska A; Wierzbicka A; Lorenc RS
    Hypertension; 2008 Jan; 51(1):77-83. PubMed ID: 17984369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are there effects of age, gender, height, and body fat on the functional muscle-bone unit in children and adults?
    Duran I; Martakis K; Hamacher S; Stark C; Semler O; Schoenau E
    Osteoporos Int; 2018 May; 29(5):1069-1079. PubMed ID: 29455248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal status and body composition in young women with functional hypothalamic amenorrhea.
    Podfigurna-Stopa A; Pludowski P; Jaworski M; Lorenc R; Genazzani AR; Meczekalski B
    Gynecol Endocrinol; 2012 Apr; 28(4):299-304. PubMed ID: 21957879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Idiopathic juvenile osteoporosis--an analysis of the muscle-bone relationship.
    Płudowski P; Lebiedowski M; Olszaniecka M; Marowska J; Matusik H; Lorenc RS
    Osteoporos Int; 2006; 17(11):1681-90. PubMed ID: 16951909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Relationship between bone mineral content and growth disorders in children with juvenile idiopathic arthritis].
    Górska A; Urban M; Konstantynowicz J; Bartnicka M; Chlabicz S; Górski S; Kaczmarski M
    Pol Merkur Lekarski; 2008 Mar; 24(141):227-30. PubMed ID: 18634288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between lean body mass and bone mineral content in paediatric health and disease.
    Crabtree NJ; Kibirige MS; Fordham JN; Banks LM; Muntoni F; Chinn D; Boivin CM; Shaw NJ
    Bone; 2004 Oct; 35(4):965-72. PubMed ID: 15454104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From mechanostat theory to development of the "Functional Muscle-Bone-Unit".
    Schoenau E
    J Musculoskelet Neuronal Interact; 2005; 5(3):232-8. PubMed ID: 16172514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition.
    Burnham JM; Shults J; Semeao E; Foster B; Zemel BS; Stallings VA; Leonard MB
    J Bone Miner Res; 2004 Dec; 19(12):1961-8. PubMed ID: 15537438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 'Functional Muscle-Bone Unit': probing the relevance of mechanical signals for bone development in children and adolescents.
    Fricke O; Schoenau E
    Growth Horm IGF Res; 2007 Feb; 17(1):1-9. PubMed ID: 17194607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of lean tissue and fat mass with bone mineral content in children and adolescents.
    Pietrobelli A; Faith MS; Wang J; Brambilla P; Chiumello G; Heymsfield SB
    Obes Res; 2002 Jan; 10(1):56-60. PubMed ID: 11786602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone status of Indian children and adolescents with type 1 diabetes mellitus.
    Parthasarathy LS; Khadilkar VV; Chiplonkar SA; Zulf Mughal M; Khadilkar AV
    Bone; 2016 Jan; 82():16-20. PubMed ID: 25956533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. National Health and Nutrition Examination Survey whole-body dual-energy X-ray absorptiometry reference data for GE Lunar systems.
    Fan B; Shepherd JA; Levine MA; Steinberg D; Wacker W; Barden HS; Ergun D; Wu XP
    J Clin Densitom; 2014; 17(3):344-77. PubMed ID: 24161789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limitations of expressing left ventricular mass relative to height and to body surface area in children.
    Foster BJ; Gao T; Mackie AS; Zemel BS; Ali H; Platt RW; Colan SD
    J Am Soc Echocardiogr; 2013 Apr; 26(4):410-8. PubMed ID: 23267782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle mass during childhood--relationship to skeletal development.
    Schoenau E; Neu MC; Manz F
    J Musculoskelet Neuronal Interact; 2004 Mar; 4(1):105-8. PubMed ID: 15615084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships of appendicular LMI and total body LMI to bone mass and physical activity levels in a birth cohort of New Zealand five-year olds.
    Goulding A; Taylor RW; Grant AM; Jones S; Taylor BJ; Williams SM
    Bone; 2009 Sep; 45(3):455-9. PubMed ID: 19450717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body composition in patients with congenital myotonic dystrophy.
    Ceballos-Sáenz D; Zapata-Aldana E; Singeris S; Hicks R; Johnson N; Campbell C
    Muscle Nerve; 2019 Aug; 60(2):176-179. PubMed ID: 31074869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone mineral accretion and its relationship to growth, sexual maturation and body composition during childhood and adolescence.
    Zemel B
    World Rev Nutr Diet; 2013; 106():39-45. PubMed ID: 23428679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone and body composition of children and adolescents with repeated forearm fractures.
    Goulding A; Grant AM; Williams SM
    J Bone Miner Res; 2005 Dec; 20(12):2090-6. PubMed ID: 16294262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.