These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications. Kim YW; Yoo JY Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591 [TBL] [Abstract][Full Text] [Related]
6. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis. Yan S; Yuan D Talanta; 2021 Jan; 221():121401. PubMed ID: 33076055 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lee MG; Choi S; Park JK Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733 [TBL] [Abstract][Full Text] [Related]
8. Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing. Gañán-Calvo AM; Montanero JM; Martín-Banderas L; Flores-Mosquera M Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1447-69. PubMed ID: 23954401 [TBL] [Abstract][Full Text] [Related]
9. Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device. Al-Zareer M Med Biol Eng Comput; 2022 Jan; 60(1):47-60. PubMed ID: 34693497 [TBL] [Abstract][Full Text] [Related]
10. Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via "microfluidic drifting". Nawaz AA; Zhang X; Mao X; Rufo J; Lin SC; Guo F; Zhao Y; Lapsley M; Li P; McCoy JP; Levine SJ; Huang TJ Lab Chip; 2014 Jan; 14(2):415-23. PubMed ID: 24287742 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter. Scott R; Sethu P; Harnett CK Rev Sci Instrum; 2008 Apr; 79(4):046104. PubMed ID: 18447562 [TBL] [Abstract][Full Text] [Related]
12. Microfluidics in structured multimaterial fibers. Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819 [TBL] [Abstract][Full Text] [Related]
14. Investigation of hydrodynamic focusing in a microfluidic coulter counter device. Zhang M; Lian Y; Harnett C; Brehob E J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354 [TBL] [Abstract][Full Text] [Related]
15. Fundamentals of microfluidics for high school students with no prior knowledge of fluid mechanics. Tandon V; Peck W Methods Mol Biol; 2013; 949():41-54. PubMed ID: 23329434 [TBL] [Abstract][Full Text] [Related]
16. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Mao X; Lin SC; Dong C; Huang TJ Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing. Wang F; Wang H; Wang J; Wang HY; Rummel PL; Garimella SV; Lu C Biotechnol Bioeng; 2008 May; 100(1):150-8. PubMed ID: 18078299 [TBL] [Abstract][Full Text] [Related]
18. An adaptive three-dimensional hydrodynamic focusing microfluidic impedance flow cytometer. Zhou Y; Wang J; Liu T; Wu M; Lan Y; Jia C; Zhao J Analyst; 2023 Jul; 148(14):3239-3246. PubMed ID: 37341575 [TBL] [Abstract][Full Text] [Related]