BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25042048)

  • 1. Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: pretreated biomass.
    Luterbacher JS; Moran-Mirabal JM; Burkholder EW; Walker LP
    Biotechnol Bioeng; 2015 Jan; 112(1):32-42. PubMed ID: 25042048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose.
    Luterbacher JS; Moran-Mirabal JM; Burkholder EW; Walker LP
    Biotechnol Bioeng; 2015 Jan; 112(1):21-31. PubMed ID: 25042118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled Trichoderma reseii Cel7A through confocal microscopy.
    Luterbacher JS; Walker LP; Moran-Mirabal JM
    Biotechnol Bioeng; 2013 Jan; 110(1):108-17. PubMed ID: 22766843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy.
    Donaldson L; Vaidya A
    Sci Rep; 2017 Mar; 7():44386. PubMed ID: 28281670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass.
    Zheng Y; Zhang S; Miao S; Su Z; Wang P
    J Biotechnol; 2013 Jul; 166(3):135-43. PubMed ID: 23648794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass.
    Yu Z; Gwak KS; Treasure T; Jameel H; Chang HM; Park S
    ChemSusChem; 2014 Jul; 7(7):1942-50. PubMed ID: 24903047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
    Ko JK; Ximenes E; Kim Y; Ladisch MR
    Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the kinetics of complex systems: enzymatic hydrolysis of lignocellulosic substrates.
    Suarez CA; Cavalcanti-MontaƱo ID; da Costa Marques RG; Furlan FF; da Mota e Aquino PL; de Campos Giordano R; de Sousa R
    Appl Biochem Biotechnol; 2014 Jul; 173(5):1083-96. PubMed ID: 24756607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques.
    Wang QQ; He Z; Zhu Z; Zhang YH; Ni Y; Luo XL; Zhu JY
    Biotechnol Bioeng; 2012 Feb; 109(2):381-9. PubMed ID: 21915856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation.
    Karthika K; Arun AB; Rekha PD
    Carbohydr Polym; 2012 Oct; 90(2):1038-45. PubMed ID: 22840037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies on the product inhibition of enzymatic lignocellulose hydrolysis.
    Miao Y; Chen JY; Jiang X; Huang Z
    Appl Biochem Biotechnol; 2012 May; 167(2):358-66. PubMed ID: 22552805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lime pretreatment of switchgrass at mild temperatures for ethanol production.
    Xu J; Cheng JJ; Sharma-Shivappa RR; Burns JC
    Bioresour Technol; 2010 Apr; 101(8):2900-3. PubMed ID: 20042332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia.
    Rollin JA; Zhu Z; Sathitsuksanoh N; Zhang YH
    Biotechnol Bioeng; 2011 Jan; 108(1):22-30. PubMed ID: 20812260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates.
    Hu J; Gourlay K; Arantes V; Van Dyk JS; Pribowo A; Saddler JN
    ChemSusChem; 2015 Mar; 8(5):901-7. PubMed ID: 25607348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding.
    Rahikainen JL; Evans JD; Mikander S; Kalliola A; Puranen T; Tamminen T; Marjamaa K; Kruus K
    Enzyme Microb Technol; 2013 Oct; 53(5):315-21. PubMed ID: 24034430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate.
    Lou H; Wang M; Lai H; Lin X; Zhou M; Yang D; Qiu X
    Bioresour Technol; 2013 Oct; 146():478-484. PubMed ID: 23958680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.
    Strobel KL; Pfeiffer KA; Blanch HW; Clark DS
    J Biol Chem; 2015 Sep; 290(37):22818-26. PubMed ID: 26209638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion.
    Obama P; Ricochon G; Muniglia L; Brosse N
    Bioresour Technol; 2012 May; 112():156-63. PubMed ID: 22424922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids.
    Zhao H; Baker GA; Cowins JV
    Biotechnol Prog; 2010; 26(1):127-33. PubMed ID: 19918908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.
    Garmakhany AD; Kashaninejad M; Aalami M; Maghsoudlou Y; Khomieri M; Tabil LG
    J Sci Food Agric; 2014 Jun; 94(8):1607-13. PubMed ID: 24186725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.