BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25042424)

  • 1. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features.
    Li Y; Wang M; Wang H; Tan H; Zhang Z; Webb GI; Song J
    Sci Rep; 2014 Jul; 4():5765. PubMed ID: 25042424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.
    Wen PP; Shi SP; Xu HD; Wang LN; Qiu JD
    Bioinformatics; 2016 Oct; 32(20):3107-3115. PubMed ID: 27354692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position-specific analysis and prediction for protein lysine acetylation based on multiple features.
    Suo SB; Qiu JD; Shi SP; Sun XY; Huang SY; Chen X; Liang RP
    PLoS One; 2012; 7(11):e49108. PubMed ID: 23173045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection.
    Song J; Wang H; Wang J; Leier A; Marquez-Lago T; Yang B; Zhang Z; Akutsu T; Webb GI; Daly RJ
    Sci Rep; 2017 Jul; 7(1):6862. PubMed ID: 28761071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.
    Wuyun Q; Zheng W; Zhang Y; Ruan J; Hu G
    PLoS One; 2016; 11(5):e0155370. PubMed ID: 27183223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC.
    Chen G; Cao M; Yu J; Guo X; Shi S
    J Theor Biol; 2019 Jan; 461():92-101. PubMed ID: 30365945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of lysine acetylation proteome-wide.
    Basu A
    Methods Mol Biol; 2013; 981():127-36. PubMed ID: 23381858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting protein post-translational modifications using meta-analysis of proteome scale data sets.
    Schwartz D; Chou MF; Church GM
    Mol Cell Proteomics; 2009 Feb; 8(2):365-79. PubMed ID: 18974045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Prediction of Protein Epsilon Lysine Acetylation Sites Based on a Feature Selection Method.
    Gao J; Tao XW; Zhao J; Feng YM; Cai YD; Zhang N
    Comb Chem High Throughput Screen; 2017; 20(7):629-637. PubMed ID: 28292250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features.
    Hasan MM; Kurata H
    PLoS One; 2018; 13(10):e0200283. PubMed ID: 30312302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide prediction of acetylation substrates.
    Basu A; Rose KL; Zhang J; Beavis RC; Ueberheide B; Garcia BA; Chait B; Zhao Y; Hunt DF; Segal E; Allis CD; Hake SB
    Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13785-90. PubMed ID: 19666589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method.
    Li A; Xue Y; Jin C; Wang M; Yao X
    Biochem Biophys Res Commun; 2006 Dec; 350(4):818-24. PubMed ID: 17045240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-Specific Identification of Lysine Acetylation Stoichiometries in Mammalian Cells.
    Zhou T; Chung YH; Chen J; Chen Y
    J Proteome Res; 2016 Mar; 15(3):1103-13. PubMed ID: 26839187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition.
    Zhao X; Ning Q; Ai M; Chai H; Yang G
    J Theor Biol; 2016 Jun; 398():96-102. PubMed ID: 27025952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic identification of species-specific protein succinylation sites using joint element features information.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D
    Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and prediction of human acetylation using a cascade classifier based on support vector machine.
    Ning Q; Yu M; Ji J; Ma Z; Zhao X
    BMC Bioinformatics; 2019 Jun; 20(1):346. PubMed ID: 31208321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.