These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25042459)

  • 1. Structural and mechanical repair of diffuse damage in cortical bone in vivo.
    Seref-Ferlengez Z; Basta-Pljakic J; Kennedy OD; Philemon CJ; Schaffler MB
    J Bone Miner Res; 2014 Dec; 29(12):2537-44. PubMed ID: 25042459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal Distribution of Linear Microcracks and Diffuse Microdamage Following Daily Bouts of Fatigue Loading of Rat Ulnae.
    Liu X; Tang C; Zhang X; Cai J; Yan Z; Xie K; Yang Z; Wang J; Guo XE; Luo E; Jing D
    J Orthop Res; 2019 Oct; 37(10):2112-2121. PubMed ID: 31206769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracortical remodeling in adult rat long bones after fatigue loading.
    Bentolila V; Boyce TM; Fyhrie DP; Drumb R; Skerry TM; Schaffler MB
    Bone; 1998 Sep; 23(3):275-81. PubMed ID: 9737350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage.
    Herman BC; Cardoso L; Majeska RJ; Jepsen KJ; Schaffler MB
    Bone; 2010 Oct; 47(4):766-72. PubMed ID: 20633708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of bone structural properties by accumulation and coalescence of microcracks.
    Danova NA; Colopy SA; Radtke CL; Kalscheur VL; Markel MD; Vanderby R; McCabe RP; Escarcega AJ; Muir P
    Bone; 2003 Aug; 33(2):197-205. PubMed ID: 14499353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.
    Lynch JA; Silva MJ
    Bone; 2008 May; 42(5):942-9. PubMed ID: 18295561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo.
    Verborgt O; Gibson GJ; Schaffler MB
    J Bone Miner Res; 2000 Jan; 15(1):60-7. PubMed ID: 10646115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal characterization of microdamage accumulation and its targeted remodeling mechanisms in diabetic fatigued bone.
    Liu X; Li W; Cai J; Yan Z; Shao X; Xie K; Guo XE; Luo E; Jing D
    FASEB J; 2020 Feb; 34(2):2579-2594. PubMed ID: 31908007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive fatigue fracture model of the rat ulna.
    Tami AE; Nasser P; Schaffler MB; Knothe Tate ML
    J Orthop Res; 2003 Nov; 21(6):1018-24. PubMed ID: 14554214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchies of damage induced loss of mechanical properties in calcified bone after in vivo fatigue loading of rat ulnae.
    Macione J; Kavukcuoglu NB; Nesbitt RS; Mann AB; Guzelsu N; Kotha SP
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):841-8. PubMed ID: 21616465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of calcitonin gene-related peptide in bone repair after cyclic fatigue loading.
    Sample SJ; Hao Z; Wilson AP; Muir P
    PLoS One; 2011; 6(6):e20386. PubMed ID: 21694766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of athletic fatigue damage and the associated bone targeted remodeling in the rat ulna.
    Hao L; Rui-Xin L; Biao H; Bin Z; Bao-Hui H; Ying-Jie L; Xi-Zheng Z
    Biomed Eng Online; 2017 Aug; 16(1):99. PubMed ID: 28789651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone.
    Noble BS; Peet N; Stevens HY; Brabbs A; Mosley JR; Reilly GC; Reeve J; Skerry TM; Lanyon LE
    Am J Physiol Cell Physiol; 2003 Apr; 284(4):C934-43. PubMed ID: 12477665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observations of microdamage around osteocyte lacunae in bone.
    Reilly GC
    J Biomech; 2000 Sep; 33(9):1131-4. PubMed ID: 10854886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations.
    Kennedy OD; Herman BC; Laudier DM; Majeska RJ; Sun HB; Schaffler MB
    Bone; 2012 May; 50(5):1115-22. PubMed ID: 22342796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.